You are looking at 1 - 4 of 4 items for :

  • The Olympic Mountains Experiment (OLYMPEX) x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All
Brenda Dolan, Steven A. Rutledge, and Kristen L. Rasmussen


Orographic precipitation results from complex interactions between terrain, large-scale flow, turbulent motions, and microphysical processes. This study appeals to polarimetric radar data in conjunction with surface-based disdrometer observations, airborne particle probes, and reanalysis data to study these processes and their interactions as observed during the Olympic Mountain Experiment (OLYMPEX). Radar and disdrometer observations from OLYMPEX, which was conducted over the Olympic Peninsula in the winter of 2015, revealed 3 times as much rain fell over elevated sites compared to those along the ocean and coast. Several events were marked by significant water vapor transport and strong onshore flow. Detailed analysis of four cases demonstrated that the warm sector, which previous authors noted to be a period of strong orographic enhancement over the terrain, is associated not only with deeper warm cloud regions, but also deeper cold cloud regions, with the latter supporting the growth of dendritic ice crystals between 4 and 6 km. This dendritic growth promotes enhanced aggregation just above the melting layer, which then seeds the warm cloud layer below, allowing additional drop growth via coalescence. Periods of subsynoptic variability associated with mesoscale boundaries and low-level jets are shown to locally modify both the ice microphysics as well as surface drop-size distributions. This study explores the spatial and temporal variability of precipitation, cloud microphysics, and their relationship over the complex terrain of the Olympic Peninsula.

Significance Statement

This study appeals to polarimetric radar, aircraft particle probes, disdrometer data, and reanalysis to investigate the complex interactions between large frontal systems, terrain, and microphysical processes contributing to precipitation characteristics at the surface over the Olympic Peninsula. The study finds that the precipitation is a complex function of the synoptic regime, distance inland, and terrain height. Ice microphysical processes aloft act to modulate the surface rain drop size distributions, and are more important in contributing to higher rain accumulations inland during the later phases of the warm sector, particularly over the middle terrain heights (100–500 m).

Restricted access
Joseph P. Zagrodnik, Lynn McMurdie, and Robert Conrick


High-resolution numerical model simulations of six different cases during the 2015/16 Olympic Mountains Experiment (OLYMPEX) are used to examine dynamic and microphysical precipitation processes on both the full barrier-scale and smaller sub-barrier-scale ridges and valleys. The degree to which stratiform precipitation within midlatitude cyclones is modified over the coastal Olympic Mountains range was found to be strongly dependent on the synoptic environment within a cyclone’s prefrontal and warm sectors. In prefrontal sectors, barrier-scale ascent over stably stratified flow resulted in enhanced ice production aloft at the coast and generally upstream of higher terrain. At low levels, stable flow orientated transverse to sub-barrier-scale windward ridges generated small-scale mountain waves, which failed to produce enough cloud water to appreciably enhance precipitation on the scale of the windward ridges. In moist-neutral warm sectors, the upstream side of the barrier exhibited broad ascent oriented along the windward ridges with lesser regions of adjacent downward motion. Significant quantities of cloud water were produced over coastal foothills with further production of cloud water on the lower-windward slopes. Ice production above the melting layer occurred directly over the barrier where the ice particles were further advected downstream by cross-barrier winds and spilled over into the lee. The coastal foothills were found to be essential for the production and maintenance of cloud water upstream of the primary topographic barrier, allowing additional time for hydrometeors to grow to precipitation size by autoconversion and collection before falling out on the lower-windward slopes.

Open access
Aaron R. Naeger, Brian A. Colle, Na Zhou, and Andrew Molthan


Field observations from the Olympic Mountain Experiment (OLYMPEX) around western Washington State during two atmospheric river (AR) events in November 2015 were used to evaluate several bulk microphysical parameterizations (BMPs) within the Weather Research and Forecasting (WRF) Model. These AR events were characterized by a prefrontal period of stable, terrain-blocked flow with an abundance of cold rain over the lowland region followed by less stable, unblocked flow with more warm rain, and a shift in the largest precipitation amounts to over the windward Olympic slopes. Our WRF simulations underpredicted the precipitation by 19%–36% in the Morrison (MORR) and Thompson (THOM) BMPs and 10%–23% in the predicted particle properties (P3) BMP, with the largest underpredictions over the windward slopes during the more convective, unblocked flow conditions. Several important processes related to the BMPs led to the differences in simulated precipitation. First, the prognostic single ice category parameterization in the P3 scheme promoted a more realistic evolution of rimed particles and larger cold rain production, which led to the lowest underpredictions in precipitation among the schemes. Second, efficient melting processes associated with the production of nonspherical ice and snow in the P3 and THOM BMPs, respectively, promoted a more realistic transition to rain fall speeds within the warm layer compared to the spherical snow assumption in MORR. Last, all BMPs underpredict the contribution of warm rain processes to the surface precipitation, particularly during the unblocked flow period, which may be partly explained by too weak condensational and collisional growth processes due to the neglect of turbulence parameterizations within the schemes.

Free access
David J. Purnell and Daniel J. Kirshbaum


The synoptic controls on orographic precipitation during the Olympics Mountains Experiment (OLYMPEX) are investigated using observations and numerical simulations. Observational precipitation retrievals for six warm-frontal (WF), six warm-sector (WS), and six postfrontal (PF) periods indicate that heavy precipitation occurred in both WF and WS periods, but the latter saw larger orographic enhancements. Such enhancements extended well upstream of the terrain in WF periods but were focused over the windward slopes in both PF and WS periods. Quasi-idealized simulations, constrained by OLYMPEX data, reproduce the key synoptic sensitivities of the OLYMPEX precipitation distributions and thus facilitate physical interpretation. These sensitivities are largely explained by three upstream parameters: the large-scale precipitation rate , the impinging horizontal moisture flux I, and the low-level static stability. Both WF and WS events exhibit large and I, and thus, heavy orographic precipitation, which is greatly enhanced in amplitude and areal extent by the seeder–feeder process. However, the stronger stability of the WF periods, particularly within the frontal inversion (even when it lies above crest level), causes their precipitation enhancement to weaken and shift upstream. In contrast, the small and I, larger static stability, and absence of stratiform feeder clouds in the nominally unsaturated and convective PF events yield much lighter time- and area-averaged precipitation. Modest enhancements still occur over the windward slopes due to the local development and invigoration of shallow convective showers.

Full access