Browse

You are looking at 1 - 9 of 9 items for :

  • Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
B. Praveen Kumar, Eric D’Asaro, N. Sureshkumar, E. Pattabhi Rama Rao, and M. Ravichandran

Abstract

We use profiles from a Lagrangian float in the north Indian Ocean to explore the usefulness of Thorpe analysis methods to measure vertical scales and dissipation rates in the ocean surface boundary layer. An rms Thorpe length scale L T and an energy dissipation rate ε T were computed by resorting the measured density profiles. These are compared to the mixed layer depth (MLD) computed with different density thresholds, the Monin–Obukhov (MO) length L MO computed from the ERA5 reanalysis values of wind stress, and buoyancy flux B 0 and dissipation rates ε from historical microstructure data. The Thorpe length scale L T is found to accurately match MLD for small (<0.005 kg m−3) density thresholds, but not for larger thresholds, because these do not detect the warm diurnal layers. We use ξ = L T/|L MO| to classify the boundary layer turbulence during nighttime convection. In our data, 90% of points from the Bay of Bengal (Arabian Sea) satisfy ξ < 1 (1 < ξ <10), indicating that wind forcing is (both wind forcing and convection are) driving the turbulence. Over the measured range of ξ, ε T decreases with decreasing ξ, i.e., more wind forcing, while ε increases, clearly showing that ε/ε T decreases with increasing ξ. This is explained by a new scaling for ξ ≪ 1, ε T = 1.15B 0 ξ 0.5 compared to the historical scaling ε = 0.64B 0 + 1.76ξ −1. For ξ ≪ 1 we expect ε = ε T. Similar calculations may be possible using routine Argo float and ship data, allowing more detailed global measurements of ε T, thereby providing large-scale tests of turbulence scaling in boundary layers.

Restricted access
Kenneth G. Hughes, James N. Moum, Emily L. Shroyer, and William D. Smyth

Abstract

In low winds (2 m s−1), diurnal warm layers form, but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (8 m s−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 1000 and 1600 local time (LT) (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = ¼ threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < ¼. This changes around 1600–1700 LT. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order-of-magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

Restricted access
C. A. Luecke, H. W. Wijesekera, E. Jarosz, D. W. Wang, J. C. Wesson, S. U. P. Jinadasa, H. J. S. Fernando, and W. J. Teague

Abstract

Long-term measurements of turbulent kinetic energy dissipation rate (ε), and turbulent temperature variance dissipation rate (χ T) in the thermocline, along with currents, temperature, and salinity were made at two subsurface moorings in the southern Bay of Bengal (BoB). This is a part of a major international program, conducted between July 2018 and June 2019, for investigating the role of the BoB on the monsoon intraseasonal oscillations. One mooring was located on the typical path of the Southwest Monsoon Current (SMC), and the other was in a region where the Sri Lanka dome is typically found during the summer monsoon. Microstructure and finescale estimates of vertical diffusivity revealed the long-term subthermocline mixing patterns in the southern BoB. Enhanced turbulence and large eddy diffusivities were observed within the SMC during the passage of a subsurface-intensified anticyclonic eddy. During this time, background shear and strain appeared to influence high-frequency motions such as near-inertial waves and internal tides, leading to increased mixing. Near the Sri Lanka dome, enhanced dissipation occurred at the margins of the cyclonic feature. Turbulent mixing was enhanced with the passage of Rossby waves and eddies. During these events, values of χ T exceeding 10−4 °C2 s−1 were recorded concurrently with ε values exceeding 10−5 W kg−1. Inferred diffusivity peaked well above background values of 10−6 m2 s−1, leading to an annually averaged diffusivity near 10−4 m2 s−1. Turbulence appeared low throughout much of the deployment period. Most of the mixing occurred in spurts during isolated events.

Restricted access
Kenneth G. Hughes, James N. Moum, and Emily L. Shroyer

Abstract

Penetration of solar radiation in the upper few meters of the ocean creates a near-surface, stratified diurnal warm layer. Wind stress accelerates a diurnal jet in this layer. Turbulence generated at the diurnal thermocline, where the shear of the diurnal jet is concentrated, redistributes heat downward via mixing. New measurements of temperature and turbulence from fast thermistors on a surface-following platform depict the details of this sequence in both time and depth. Temporally, the sequence at a fixed depth follows a counterclockwise path in logϵ–logN parameter space. This path also captures the evolution of buoyancy Reynolds number (a proxy for the anisotropy of the turbulence) and Ozmidov scale (a proxy for the outer vertical length scale of turbulence in the absence of the free surface). Vertically, the solar heat flux always leads to heating of fluid parcels in the upper few meters, whereas the turbulent heat flux divergence changes sign across the depth of maximum vertical temperature gradient, cooling fluid parcels above and heating fluid parcels below. In general, our measurements of fluid parcel heating or cooling rates of order 0.1°C h−1 are consistent with our estimates of heat flux divergence. In weak winds (<2 m s−1), sea surface temperature (SST) is controlled by the depth-dependent absorption of solar radiation. In stronger winds, turbulent mixing controls SST.

Free access
Jai Sukhatme, Dipanjan Chaudhuri, Jennifer MacKinnon, S. Shivaprasad, and Debasis Sengupta

Abstract

Horizontal currents in the Bay of Bengal were measured on eight cruises covering a total of 8600 km using a 300-kHz acoustic Doppler current profiler (ADCP). The cruises are distributed over multiple seasons and regions of the Bay. Horizontal wavenumber spectra of these currents over depths of 12–54 m and wavelengths from 2 to 400 km were decomposed into rotational and divergent components assuming isotropy. An average of across- and along-track spectra over all cruises shows that the spectral slope of horizontal kinetic energy for wavelengths of 10–80-km scales with an exponent of −1.7 ± 0.05, which transitions to a steeper slope for wavelengths above 80 km. The rotational component is significantly larger than the divergent component at scales greater than 80 km, while the ratio of the two is nearly constant with a mean of 1.16 ± 0.4 between 10 and 80 km. The measurements show a fair amount of variability and spectral levels vary between cruises by about a factor of 5 over 10–100 km. Velocity differences over 10–80 km show probability density functions and structure functions with stretched exponential behavior and anomalous scaling. Comparisons with the Garrett–Munk internal wave spectrum indicate that inertia–gravity waves account for only a modest fraction of the kinetic energy between 10 and 80 km. These constraints suggest that the near-surface flow in the Bay is primarily balanced and follows a forward enstrophy transfer quasigeostrophic regime for wavelengths greater than approximately 80 km, with a larger role for unbalanced rotating stratified turbulence and internal waves at smaller scales.

Free access
Kenneth G. Hughes, James N. Moum, and Emily L. Shroyer

Abstract

The daily formation of near-surface ocean stratification caused by penetrating solar radiation modifies heat fluxes through the air–sea interface, turbulence dissipation in the mixed layer, and the vertical profile of lateral transport. The transport is altered because momentum from wind is trapped in a thin near-surface layer, the diurnal warm layer. We investigate the dynamics of this layer, with particular attention to the vertical shear of horizontal velocity. We first develop a quantitative link between the near-surface shear components that relates the crosswind component to the inertial turning of the along-wind component. Three days of high-resolution velocity observations confirm this relation. Clear colocation of shear and stratification with Richardson numbers near 0.25 indicate marginal instability. Idealized numerical modeling is then invoked to extrapolate below the observed wind speeds. This modeling, together with a simple energetic scaling analysis, provides a rule of thumb that the diurnal shear evolves differently above and below a 2 m s−1 wind speed, with limited sensitivity of this threshold to latitude and mean net surface heat flux. Only above this wind speed is the energy input sufficient to overcome the stabilizing buoyancy flux and thereby induce marginal instability. The differing shear regimes explain differences in the timing and magnitude of diurnal sea surface temperature anomalies.

Free access
D. A. Cherian, E. L. Shroyer, H. W. Wijesekera, and J. N. Moum

Abstract

We describe the seasonal cycle of mixing in the top 30–100 m of the Bay of Bengal as observed by moored mixing meters (χpods) deployed along 8°N between 85.5° and 88.5°E in 2014 and 2015. All χpod observations were combined to form seasonal-mean vertical profiles of turbulence diffusivity K T in the top 100 m. The strongest turbulence is observed during the southwest and postmonsoon seasons, that is, between July and November. The northeast monsoon (December–February) is a period of similarly high mean K T but an order of magnitude lower median K T, a sign of energetic episodic mixing events forced by near-inertial shear events. The months of March and April, a period of weak wind forcing and low near-inertial shear amplitude, are characterized by near-molecular values of K T in the thermocline for weeks at a time. Strong mixing events coincide with the passage of surface-forced downward-propagating near-inertial waves and with the presence of enhanced low-frequency shear associated with the Summer Monsoon Current and other mesoscale features between July and October. This seasonal cycle of mixing is consequential. We find that monthly averaged turbulent transport of salt out of the salty Arabian Sea water between August and January is significant relative to local EP. The magnitude of this salt flux is approximately that required to close model-based salt budgets for the upper Bay of Bengal.

Free access
Sebastian Essink, Verena Hormann, Luca R. Centurioni, and Amala Mahadevan

Abstract

A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius L D, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.

Full access
Dipanjan Chaudhuri, Debasis Sengupta, Eric D’Asaro, R. Venkatesan, and M. Ravichandran

Abstract

Cyclone Phailin, which developed over the Bay of Bengal in October 2013, was one of the strongest tropical cyclones to make landfall in India. We study the response of the salinity-stratified north Bay of Bengal to Cyclone Phailin with the help of hourly observations from three open-ocean moorings 200 km from the cyclone track, a mooring close to the cyclone track, daily sea surface salinity (SSS) from Aquarius, and a one-dimensional model. Before the arrival of Phailin, moored observations showed a shallow layer of low-salinity water lying above a deep, warm “barrier” layer. As the winds strengthened, upper-ocean mixing due to enhanced vertical shear of storm-generated currents led to a rapid increase of near-surface salinity. Sea surface temperature (SST) cooled very little, however, because the prestorm subsurface ocean was warm. Aquarius SSS increased by 1.5–3 psu over an area of nearly one million square kilometers in the north Bay of Bengal. A one-dimensional model, with initial conditions and surface forcing based on moored observations, shows that cyclone winds rapidly eroded the shallow, salinity-dominated density stratification and mixed the upper ocean to 40–50-m depth, consistent with observations. Model sensitivity experiments indicate that changes in ocean mixed layer temperature in response to Cyclone Phailin are small. A nearly isothermal, salinity-stratified barrier layer in the prestorm upper ocean has two effects. First, near-surface density stratification reduces the depth of vertical mixing. Second, mixing is confined to the nearly isothermal layer, resulting in little or no SST cooling.

Full access