Browse

You are looking at 1 - 4 of 4 items for :

  • Monthly Weather Review x
  • Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics x
  • Refine by Access: All Content x
Clear All
Michael B. Natoli and Eric D. Maloney

Abstract

The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

Restricted access
Michael B. Natoli and Eric D. Maloney

Abstract

The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 reanalysis, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-year composite analysis are used to understand the effect of the QBWO on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches a maximum amplitude on the western side of the Philippines on days with average to above average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO.Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local scale environmental background state similarly.

Restricted access
Benjamin C. Trabing and Michael M. Bell

Abstract

A growing body of work has documented the existence of diurnal oscillations in the tropical cyclone outflow layer. These diurnal pulses have been examined primarily using satellites or numerical models, and detailed full tropospheric observations or case study analyses of diurnal pulses are lacking. Questions remain on the vertical extent of diurnal pulses and whether diurnal pulses are coupled to convective bands or constrained to the outflow layer. During the Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign, diurnal oscillations in the upper-level clouds were observed during Typhoon Kong-rey’s (2018) rapid intensification. Over a 3.5-day period where a broad distribution of cold upper-level clouds was overhead, detailed observations of Typhoon Kong-rey’s rainbands show that convection had reduced echo tops but enhanced reflectivity and differential reflectivity aloft compared to other observations during PISTON. Shortwave heating in the upper levels increased the stability profile in an overall favorable thermodynamic environment for convection during the day, which could help to explain the diurnal differences in convective structure. Under the cirrus canopy, nocturnal convection was deeper and daytime convection shallower in contrast to the rest of the PISTON dataset. Diurnal oscillations in the brightness temperatures were found to be coupled to radially outward propagating convective rainbands that were preceded ~6 h by outflow jets. The cooling pulses occurred earlier than found in previous studies. The pulses were asymmetric spatially, which is likely due to a combination of the vertical wind shear and storm intensity.

Restricted access
Kyle Chudler, Weixin Xu, and Steven A. Rutledge

Abstract

During the boreal summer, satellite-based precipitation estimates indicate a distinct maximum in rainfall off the west coast of the island of Luzon in the Philippines. Also occurring during the summer months is the boreal summer intraseasonal oscillation (BSISO), a main driver of intraseasonal variability in the region. This study investigates the diurnal variability of convective intensity, morphology, and precipitation coverage offshore and over the island of Luzon. The results are then composited by BSISO activity. Results of this study indicate that offshore precipitation is markedly increased during active BSISO phases, when strong low-level southwesterly monsoon winds bring increased moisture and enhanced convergence upwind of the island’s high terrain. A key finding of this work is the existence of an afternoon maximum in convection over Luzon even during active BSISO phases, when solar heating and instability are apparently reduced due to enhanced cloud cover. This result is important, as previous studies have shown in other areas of the tropics afternoon convection over landmasses is a key component to offshore precipitation. Although offshore precipitation is maximized in the evening hours during active phases, results indicate that precipitation frequently occurs over the ocean around the clock (both as organized systems and isolated, shallow showers), possibly owing to an increase in sensible and latent heat fluxes, vertical wind shear, and convergence of the monsoon flow with land features.

Free access