Browse
Abstract
This paper examines ice particle reorganization by three-dimensional horizontal kinematic flows within the comma head regions of two U.S. East Coast winter storms and the effect of reorganization on particle concentrations within snowbands in each storm. In these simplified experiments, the kinematic flows are from the initialization of the HRRR model. Ice particles falling through the comma head were started from either 9-, 8-, or 7-km altitude, spaced every 200 m, and were transported north or northwest, arriving within the north or northwest half of the primary snowband in each storm. The greatest particle concentration enhancement within each band was a factor of 2.32–3.84 for the 16–17 December 2020 storm and 1.76–2.32 for the 29–30 January 2022 storm. Trajectory analyses for particles originating at 4 km on the southeast side of the comma head beneath the dry slot showed that this region supplied particles to the south side of the band with particle enhancements of factor of 1.36–2.08 for the 16–17 December 2020 storm and 1.04–2.16 for the 29–30 January 2022 storm. Snowfall within the bands had two source regions: 1) on the north/northwestern side, from ice particles falling from the comma head, and 2) on the southeastern side, from particles forming at or below 4-km altitude and transported northwestward by low-level flow off the Atlantic. While the findings give information on the source of particles in the bands, they do not definitively determine the cause of precipitation banding since other factors, such as large-scale ascent and embedded convection, also contribute to snow growth.
Significance Statement
Wintertime storms along the east coast of North America can produce heavy snowfall, high winds, coastal flooding, and cold temperatures, resulting in major economic impacts within the northeast U.S. urban corridor. The heaviest snowfall typically occurs within snowbands, elongated narrow regions identifiable by high reflectivity on radar. This paper examines the potential sources of the ice particles contributing to the snowbands and how the flow fields throughout the storm can contribute to enhanced particle concentrations within the bands.
Abstract
This paper examines ice particle reorganization by three-dimensional horizontal kinematic flows within the comma head regions of two U.S. East Coast winter storms and the effect of reorganization on particle concentrations within snowbands in each storm. In these simplified experiments, the kinematic flows are from the initialization of the HRRR model. Ice particles falling through the comma head were started from either 9-, 8-, or 7-km altitude, spaced every 200 m, and were transported north or northwest, arriving within the north or northwest half of the primary snowband in each storm. The greatest particle concentration enhancement within each band was a factor of 2.32–3.84 for the 16–17 December 2020 storm and 1.76–2.32 for the 29–30 January 2022 storm. Trajectory analyses for particles originating at 4 km on the southeast side of the comma head beneath the dry slot showed that this region supplied particles to the south side of the band with particle enhancements of factor of 1.36–2.08 for the 16–17 December 2020 storm and 1.04–2.16 for the 29–30 January 2022 storm. Snowfall within the bands had two source regions: 1) on the north/northwestern side, from ice particles falling from the comma head, and 2) on the southeastern side, from particles forming at or below 4-km altitude and transported northwestward by low-level flow off the Atlantic. While the findings give information on the source of particles in the bands, they do not definitively determine the cause of precipitation banding since other factors, such as large-scale ascent and embedded convection, also contribute to snow growth.
Significance Statement
Wintertime storms along the east coast of North America can produce heavy snowfall, high winds, coastal flooding, and cold temperatures, resulting in major economic impacts within the northeast U.S. urban corridor. The heaviest snowfall typically occurs within snowbands, elongated narrow regions identifiable by high reflectivity on radar. This paper examines the potential sources of the ice particles contributing to the snowbands and how the flow fields throughout the storm can contribute to enhanced particle concentrations within the bands.