Browse

You are looking at 1 - 6 of 6 items for :

  • Journal of Climate x
  • Australasian climate over the last 2,000 years: The PAGES AUS2K synthesis x
  • Refine by Access: All Content x
Clear All
Michelle Ho
,
Danielle C. Verdon-Kidd
,
Anthony S. Kiem
, and
Russell N. Drysdale

Abstract

Recent advances in the collection and analysis of paleoclimate data have provided significant insights into preinstrumental environmental events and processes, enabling a greater understanding of long-term environmental change and associated hydroclimatic risks. Unfortunately, it is often the case that there is a dearth of readily available paleoclimate data from regions where such insights and long-term data are most needed. The Murray–Darling basin (MDB), known as Australia’s “food bowl,” is an example of such a region where currently there are very limited in situ paleoclimate data available. While previous studies have utilized paleoclimate proxy records of large-scale climate mechanisms to infer preinstrumental MDB hydroclimatic variability, there is a lack of studies that utilize Australian terrestrial proxy records to garner similar information. Given the immediate need for improved understanding of MDB hydroclimatic variability, this paper identifies key locations in Australia where existing and as yet unrealized paleoclimate records will be most useful in reconstructing such information. To identify these key locations, rainfall relationships between MDB and non-MDB locations were explored through correlations and principal component analysis. An objective analysis using optimal interpolation was then used to pinpoint the most strategic locations to further develop proxy records and gain insights into the benefits of obtaining this additional information. The findings reveal that there is potential for the future assembly of high-resolution paleoclimate records in Australia capable of informing MDB rainfall variability, in particular southeast Australia and central-northern Australia. This study highlights the need for further investment in the development of these potential proxy sources to subsequently enable improved assessments of long-term hydroclimatic risks.

Full access
Ailie J. E. Gallant
,
Steven J. Phipps
,
David J. Karoly
,
A. Brett Mullan
, and
Andrew M. Lorrey

Abstract

The stationarity of relationships between local and remote climates is a necessary, yet implicit, assumption underlying many paleoclimate reconstructions. However, the assumption is tenuous for many seasonal relationships between interannual variations in the El Niño–Southern Oscillation (ENSO) and the southern annular mode (SAM) and Australasian precipitation and mean temperatures. Nonstationary statistical relationships between local and remote climates on the 31–71-yr time scale, defined as a change in their strength and/or phase outside that expected from local climate noise, are detected on near-centennial time scales from instrumental data, climate model simulations, and paleoclimate proxies.

The relationships between ENSO and SAM and Australasian precipitation were nonstationary at 21%–37% of Australasian stations from 1900 to 2009 and strongly covaried, suggesting common modulation. Control simulations from three coupled climate models produce ENSO-like and SAM-like patterns of variability, but differ in detail to the observed patterns in Australasia. However, the model teleconnections also display nonstationarity, in some cases for over 50% of the domain. Therefore, nonstationary local–remote climatic relationships are inherent in environments regulated by internal variability. The assessments using paleoclimate reconstructions are not robust because of extraneous noise associated with the paleoclimate proxies.

Instrumental records provide the only means of calibrating and evaluating regional paleoclimate reconstructions. However, the length of Australasian instrumental observations may be too short to capture the near-centennial-scale variations in local–remote climatic relationships, potentially compromising these reconstructions. The uncertainty surrounding nonstationary teleconnections must be acknowledged and quantified. This should include interpreting nonstationarities in paleoclimate reconstructions using physically based frameworks.

Full access
Steven J. Phipps
,
Helen V. McGregor
,
Joëlle Gergis
,
Ailie J. E. Gallant
,
Raphael Neukom
,
Samantha Stevenson
,
Duncan Ackerley
,
Josephine R. Brown
,
Matt J. Fischer
, and
Tas D. van Ommen

Abstract

The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are identified and discussed. In the first of two case studies, the climate model simulations are compared with multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemisphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropogenic signal dominates during the industrial period. It is also found that seasonal and geographical biases may cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend. In the second case study, the model simulations are compared with a coral δ 18O record from the central Pacific Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic impact on El Niño–Southern Oscillation. The proxy climate relationship is found to change over time, challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations of current techniques and demonstrate the need to develop alternative approaches.

Full access
B. Timbal
and
R. Fawcett

Abstract

The instrumental record for rainfall across Australia is regarded as being sufficiently reliable to produce national monthly gridded rainfall analyses from 1900 onward. Prior to 1900, the rainfall gauge network is much sparser. The possibility of using those nineteenth-century observations that do exist to construct an estimate of rainfall across the southeastern part of Australia (SEA) is explored by constructing a network based on 11 locations comprising either single observing sites or composites of nearby observing sites with long continuous records. It is shown that, during the period 1900–2010, the monthly rainfall reconstruction based on this network captures 98% of the variability of SEA monthly average rainfall. This network, which extends back to 1865, provides a useful view of the Federation Drought, making a comparison possible with other long-term droughts observed in SEA, around the time of the Second World War and the Millennium Drought from 1997 to 2009. A comparison of these three historical low-rainfall periods was conducted using the drought–depth–duration criteria: the ongoing decline in southeastern Australia is seen as being notably worse than the previous two historical droughts. The network also provides an insight into the decadal variability of SEA rainfall in the later part of the nineteenth century; it includes a high peak in the 1870s comparable to similar wet decadal peaks in the 1950s and 1970s. The implications of this longer perspective on the decadal variability in southeastern Australia in light of the current understanding of the ongoing rainfall deficit are discussed.

Full access
Tessa R. Vance
,
Tas D. van Ommen
,
Mark A. J. Curran
,
Chris T. Plummer
, and
Andrew D. Moy

Abstract

ENSO causes climate extremes across and beyond the Pacific basin; however, evidence of ENSO at high southern latitudes is generally restricted to the South Pacific and West Antarctica. Here, the authors report a statistically significant link between ENSO and sea salt deposition during summer from the Law Dome (LD) ice core in East Antarctica. ENSO-related atmospheric anomalies from the central-western equatorial Pacific (CWEP) propagate to the South Pacific and the circumpolar high latitudes. These anomalies modulate high-latitude zonal winds, with El Niño (La Niña) conditions causing reduced (enhanced) zonal wind speeds and subsequent reduced (enhanced) summer sea salt deposition at LD. Over the last 1010 yr, the LD summer sea salt (LDSSS) record has exhibited two below-average (El Niño–like) epochs, 1000–1260 ad and 1920–2009 ad, and a longer above-average (La Niña–like) epoch from 1260 to 1860 ad. Spectral analysis shows the below-average epochs are associated with enhanced ENSO-like variability around 2–5 yr, while the above-average epoch is associated more with variability around 6–7 yr. The LDSSS record is also significantly correlated with annual rainfall in eastern mainland Australia. While the correlation displays decadal-scale variability similar to changes in the interdecadal Pacific oscillation (IPO), the LDSSS record suggests rainfall in the modern instrumental era (1910–2009 ad) is below the long-term average. In addition, recent rainfall declines in some regions of eastern and southeastern Australia appear to be mirrored by a downward trend in the LDSSS record, suggesting current rainfall regimes are unusual though not unknown over the last millennium.

Full access
Howard J. Diamond
,
Andrew M. Lorrey
, and
James A. Renwick

Abstract

The new South Pacific Enhanced Archive for Tropical Cyclones (SPEArTC) dataset provides an opportunity to develop a more complete climatology of tropical cyclones (TCs) in the southwest Pacific. Here, spatial patterns and characteristics of TCs for the 41-yr period beginning with the 1969/70 season are related to phases of the El Niño–Southern Oscillation (ENSO), taking into account the degree of ocean–atmosphere coupling. Twentieth-century reanalysis data and the coupled ENSO index (CEI) were used to investigate TC genesis areas and climate diagnostics in the extratropical transition (ETT) region at and south of 25°S during different CEI ENSO phases. This is the first study looking at CEI-based ENSO phases and the more detailed relationship of TCs to the coupling of the ocean and atmosphere during different ENSO phases. Consistent with previous findings, positive relationships exist among TCs, sea surface temperature, and atmospheric circulation. A statistically significant greater frequency of major TCs was found during the latter half of the study period (1991–2010) compared to the 1970–90 period, again consistent with the findings of other studies. Also found were significant and consistent linkages highlighting the interplay of TCs and sea surface temperature (SSTs) in the southwest Pacific basin west of 170°E and a closer connection to atmospheric circulation east of 170°E. Moreover, this study demonstrates subtle differences between a fully coupled El Niño or La Niña and atmospheric- or ocean-dominated phases, or neutral conditions.

Full access