Browse

You are looking at 1 - 10 of 7,194 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Paul A. Sanders
,
Martijn D. Dorrestijn
, and
Theo Gerkema

Abstract

The along-slope propagation of subinertial trapped internal tides is studied for the configuration of a simple step. It is revealed that they form a beam structure in the along-slope direction that is evanescent above the top of the step; these beams lack strict periodicity in the along-slope direction. As in classical internal Kelvin waves, they become less sharp away from the step, as higher modes decay more rapidly in the cross-slope direction. We discuss implications for abyssal mixing and outline the necessary ingredients for their generation.

Restricted access
Carlos Conejero
,
Lionel Renault
,
Fabien Desbiolles
,
J. C. McWilliams
, and
Hervé Giordani

Abstract

Current feedback (CFB) and thermal feedback (TFB) have been shown to strongly influence both atmospheric and oceanic dynamics at the oceanic mesoscale (10–250 km). At smaller scales, oceanic submesoscale currents (SMCs; 0.1–10 km) have a major influence on the ocean’s energy budget, variability, and ecosystems. However, submesoscale air–sea interactions are not well understood because of observational and modeling limitations related to their scales. Here, we use a realistic submesoscale-permitting coupled oceanic and atmospheric model to quantify the spatiotemporal variability of TFB and CFB coupling in the northwest tropical Atlantic Ocean. While CFB still acts as a submesoscale eddy killer by inducing an energy sink from the SMCs to the atmosphere, it appears to be more efficient at the submesoscale by approximately 30% than at the mesoscale. Submesoscale CFB affects the surface stress, however, the finite time scale of SMCs for adjusting the atmospheric boundary layer results in a diminished low-level wind response, weakening partial ocean reenergization by about 70%. Unlike at the mesoscale, submesoscale CFB induces stress/wind convergence/divergence, influencing the atmospheric boundary layer through vertical motions. The linear relationship between the surface stress derivative or wind derivative fields and sea surface temperature gradients, widespread at the mesoscale, decreases by approximately 35% ± 7% or 77% ± 10%, respectively, at the submesoscale. In addition, submesoscale TFB induces turbulent heat fluxes comparable to those at the mesoscale. Seasonal variability in meso- and submesoscale CFB and TFB coupling is mostly related to background wind speed. Also, disentangling submesoscale CFB and TFB is challenging because they can reinforce or counteract each other.

Restricted access
Yifan Wang
,
Shoude Guan
,
Zhiwei Zhang
,
Chun Zhou
,
Xin Xu
,
Chuncheng Guo
,
Wei Zhao
, and
Jiwei Tian

Abstract

Based on yearlong observations from three moorings at 12°, 14°, and 16°N in the northwest Pacific, this study presents observational evidence for the occurrence and behavior of parametric subharmonic instability (PSI) of diurnal internal tides (ITs) both in the upper and abyssal ocean around the critical latitudes (O1 IT: 13.44°N; K1 IT: 14.52°N), which is relatively less explored in comparison with PSI of M2 ITs. At 14°N, near-inertial waves (NIWs) feature a “checkerboard” pattern with comparable upward- and downward-propagating components, while the diurnal ITs mainly feature a low-mode structure. The near-inertial kinetic energy at 14°N, correlated fairly well with the diurnal KE, is the largest among three moorings. The bicoherence analysis, and a causality analysis method newly introduced here, both show statistically significant phase locking between PSI triads at 14°N, while no significant signals emerge at 12° and 16°N. The estimated PSI energy transfer rate shows a net energy transfer from diurnal ITs to NIWs with an annual-mean value of 1.5 × 10−10 W kg−1. The highly sheared NIWs generated by PSI result in a 2–6 times larger probability of shear instability events at 14°N than 12° and 16°N. Through swinging the local effective inertial frequency close to either O1 or K1 subharmonic frequencies, the passages of anticyclonic and cyclonic eddies both result in elevated NIWs and shear instability events by enhancing PSI efficiency. Particularly, different from the general understanding that cyclonic eddies usually expel NIWs, enhanced NIWs and instability are observed within cyclonic eddies whose relative vorticity can modify PSI efficiency.

Significance Statement

Parametric subharmonic instability (PSI) effectively transfers energy from low-mode internal tides (ITs) to high-mode near-inertial waves (NIWs), triggering elevated mixing around critical latitudes. This study provides observational evidence for the occurrence of PSI of diurnal ITs in the northwest Pacific and its role in enhancing shear instability. Generally, anticyclonic eddies act to trap NIWs while cyclonic eddies tend to expel NIWs. Here we document elevated NIWs and shear instability within both anticyclonic and cyclonic eddies, which shift the local effective inertial frequency close to either O1 or K1 subharmonic frequencies, thereby enhancing PSI efficiency. Processes associated with PSI and the modulation of PSI efficiency by mesoscale eddies have significant implications for improving mixing parameterizations in ocean circulation and climate models.

Restricted access
Sheng Chen
,
Wen Zheng Jiang
,
Yuhuan Xue
,
Hongyu Ma
,
Yong Qing Yu
,
Zhanli Wang
, and
Fangli Qiao

Abstract

The large scatter of the drag coefficient CD at a given wind speed and its discrepancy in coastal regions and open oceans have received increasing attention. However, the parameterization of CD is still an open question, especially in coastal regions. Therefore, this study systematically investigated the influence of surface waves on wind stress based on in situ observations of surface waves and air–sea fluxes on three coastal tower-based platforms in different regions. A formulation that is a function of only wind speed was established in the wind speed range of 1–20 m s−1, and when extended to 30 m s−1, it could predict the saturation of coastal CD at a 20 m s−1 wind speed and then the attenuation. However, this wind-based formulation does not simulate the scatter of CD in practice. By further analyzing the effect of wave states on wind stress, the parameters of wave age and directionality of wind and waves were incorporated into the wind-based formulation, and a new wave-state-based parameterization on CD was proposed, which can estimate the widely spread CD values to a large extent and the saturation of CD . The RMSE between this new parameterization and observations reduce approximately 20% and 9% relative to the COARE and wind-based formula. The applicability of this new parameterization was further demonstrated through a comparison between the newly parameterized CD and observed asymmetric CD in different quadrants of a tropical cyclone. The wave-state-based parameterization scheme requires three parameters, wind speed U 10, wave age β, and wave off-wind angle θ, and it is expected to be applied to coastal regions.

Significance Statement

Wind stress over the ocean plays an important role in numerical simulations for both the atmosphere and ocean, which requires accurate parameterization. However, parameterization of wind stress or drag coefficient CD is still an open question due to the complexity of the potential factors behind wind stress, especially for coastal regions. This manuscript provided a new wave-state-based parameterization scheme at low to high wind speeds for coastal regions, based on field observations on three coastal towers. This new parameterization can predict the saturation of CD at a wind speed of 20 m s−1 and then the attenuation, agreeing well with the previous coastal observations, and simulate the large scatter of CD to a large extent. Furthermore, it can predict the asymmetric CD in different quadrants of a tropical cyclone, consistent with the observations. This parameterization scheme requires only three parameters, wind speed, wave age, and misalignment angle between wind and wave, which can be conveniently applied to the numerical models.

Restricted access
Jie Peng
,
Miaohua Mao
, and
Meng Xia

Abstract

The dynamics of typhoon-induced waves in semienclosed seas become an interesting topic with the increase of typhoon intensity. Based on the calibrated Simulating Waves Nearshore (SWAN) model, wave dynamics were investigated under distinct typhoon tracks [e.g., Matmo (2014), Rumbia (2018), and Lekima (2019)] in the Bohai Sea. Distributions of significant wave heights (SWHs) are affected by the typhoon wind fields and are directly related to the typhoon tracks. The classical JONSWAP wave spectra were adopted for the analysis of sea states (e.g., wind seas or swells) to further explain variations in wave heights. Results indicate that the dominant sea state with higher energy experiences significant spatiotemporal variability under distinct tracks. For typhoons passing through the central part of the Bohai Sea (e.g., Rumbia), high-energy waves are observed under swell-dominated and mixed sea states, which are subjected to the fetch limitation in the semienclosed sea and rapid changes in typhoon winds. The high energy waves induced by other typhoons passing along the edges of the Bohai Sea correspond to the wind-sea-dominated sea state. Spatiotemporal variability of the sea state exhibits a high correlation with its position relative to the typhoon center. Therefore, a reference frame based on the radius of the maximum wind speed was established to discuss the sea states in this semienclosed sea. Further investigations reveal that swells (wind seas) dominate the regions within the radius of the maximum wind speed (elsewhere), and the double-peaked wave spectra tend to appear in the left quadrants.

Restricted access
Allan J. Clarke
and
Sean Buchanan

Abstract

Past work has shown that interannual California coastal sea level variability is mostly of equatorial origin, and decades of satellite sea surface height (SSH) and in situ dynamic height observations indicate that this interannual signal propagates westward from the California coast as nondispersive Rossby waves (RWs). These observations agree with standard linear vertical mode theory except that even when mean flow and bottom topography are considered, the fastest baroclinic vertical mode RW in each case is always much slower (1.6–2.3 cm s−1) than the observed 4.2 cm s−1. This order-1 disagreement is only resolved if the standard bottom boundary condition that the vertical velocity w′ = 0 is replaced by perturbation pressure p′ = 0. Zero p′ is an appropriate bottom boundary condition because south of San Francisco the northeastern Pacific Ocean boundary acts approximately like an impermeable vertical wall to the interannual equatorial wave signal, and therefore equatorial quasigeostrophic p′ is horizontally constant along the boundary. Thus, if equatorial p′ = 0 at the bottom, then this condition also applies off California. The large-scale equatorial ocean boundary signal is due to wind-forced eastward group velocity equatorial Kelvin waves, which at interannual and lower frequencies propagate at such a shallow angle to the horizontal that none of the baroclinic equatorial Kelvin wave signal reaches the ocean floor before striking the eastern Pacific boundary. Off California this signal can thus be approximated by a first baroclinic mode with p′ = 0 at the bottom, and hence the long RW speed there agrees with that observed (both approximately 4.2 cm s−1).

Significance Statement

The California Current System is one of the most biologically rich and best-documented coastal regions in the world. In this region coastal sea level propagates westward from the coast at about 110 km month−1, slow enough to enable us to make large-scale ocean climate forecasts of the California Current ecosystem using coastal sea level. Although the westward speed seems slow, theoretically it is about double what we would expect. Offered here is an explanation of why this speed is “too fast” by linking the California wave signal to the equator, El Niño, and the shallow equatorial ocean response to the wind.

Restricted access
Luigi Cavaleri
,
Sabique Langodan
,
Paolo Pezzutto
, and
Alvise Benetazzo

Abstract

We have explored the earliest stages of wind wave generation in the open sea, from the first initial wavelets appearing on an otherwise flat surface or low, smooth undulations until the practically fully developed conditions for the very low range of wind speeds we have considered. We suggest the minimal wind speed for the appearance of the first wavelets to be close to 1.8 m s−1. The peculiar conditions associated with the development of coastal sea breezes allow us to consider the local waves as generated under time-limited conditions. The 2D spectra measured during these very early stages provide the first evidence of an active Phillips process generation in the field. After appearing in these very early stages, wavelets quickly disappear as soon as the developing wind waves take a leading role. We suggest that this process is due to the strong spatial gradients in the surface orbital velocity, which impedes the instability mechanism at the base of their formation, while at a later stage of development, these gradients decrease and wavelets reappear. On a decadal perspective, the progressive decrease of the intensity of the sea breezes in the northern Adriatic Sea, where we have carried out our measurements, is associated with the steadily milder winters, and therefore not sufficiently cold local sea temperatures in early summer.

Significance Statement

We have explored for the first time the earliest stages of wind wave generation (millimeter scale) in the open sea. This was possible with the combination of the daily sea breeze development and the availability of an oceanographic tower 15 km offshore. The minimum wind speed for wave generation was 1.8 m s−1, lower than previously assumed. The data provide strong indications on the different stages of the generation process, offering measured and visual evidence, under these very light wind conditions, of the Phillips one. The presence of wind-related ripples, essential for remote sensing measurements, turns out to be dependent on the stage of generation.

Open access
Audrey Delpech
,
Roy Barkan
,
Kaushik Srinivasan
,
James C. McWilliams
,
Brian K. Arbic
,
Oladeji Q. Siyanbola
, and
Maarten C. Buijsman

Abstract

Oceanic mixing, mostly driven by the breaking of internal waves at small scales in the ocean interior, is of major importance for ocean circulation and the ocean response to future climate scenarios. Understanding how internal waves transfer their energy to smaller scales from their generation to their dissipation is therefore an important step for improving the representation of ocean mixing in climate models. In this study, the processes leading to cross-scale energy fluxes in the internal wave field are quantified using an original decomposition approach in a realistic numerical simulation of the California Current. We quantify the relative contribution of eddy–internal wave interactions and wave–wave interactions to these fluxes and show that eddy–internal wave interactions are more efficient than wave–wave interactions in the formation of the internal wave continuum spectrum. Carrying out twin numerical simulations, where we successively activate or deactivate one of the main internal wave forcing, we also show that eddy–near-inertial internal wave interactions are more efficient in the cross-scale energy transfer than eddy–tidal internal wave interactions. This results in the dissipation being dominated by the near-inertial internal waves over tidal internal waves. A companion study focuses on the role of stimulated cascade on the energy and enstrophy fluxes.

Open access
Maya I. Jakes
,
Helen E. Phillips
,
Annie Foppert
,
Ajitha Cyriac
,
Nathaniel L. Bindoff
,
Stephen R. Rintoul
, and
Andrew F. Thompson

Abstract

Eddy stirring at mesoscale oceanic fronts generates finescale filaments, visible in submesoscale-resolving model simulations and high-resolution satellite images of sea surface temperature, ocean color, and sea ice. Submesoscale filaments have widths of O(1–10) km and evolve on time scales of hours to days, making them extremely challenging to observe. Despite their relatively small scale, submesoscale processes play a key role in the climate system by providing a route to dissipation; altering the stratification of the ocean interior; and generating strong vertical velocities that exchange heat, carbon, nutrients, and oxygen between the mixed layer and the ocean interior. We present a unique set of in situ and satellite observations in a standing meander region of the Antarctic Circumpolar Current (ACC) that supports the theory of cold filamentary intensification—revealing enhanced vertical velocities and evidence of subduction and ventilation associated with finescale cold filaments. We show that these processes are not confined to the mixed layer; EM-APEX floats reveal enhanced downward velocities (>100 m day−1) and evidence of ageostrophic motion extending as deep as 1600 dbar, associated with a ∼20-km-wide cold filament. A finer-scale (∼5 km wide) cold filament crossed by a towed Triaxus is associated with anomalous chlorophyll and oxygen values extending at least 100–200 dbar below the base of the mixed layer, implying recent subduction and ventilation. Energetic standing meanders within the weakly stratified ACC provide an environment conductive to the generation of finescale filaments that can transport water mass properties across mesoscale fronts and deep into the ocean interior.

Open access
Daehyuk Kim
,
Hong-Ryeol Shin
,
Cheol-Ho Kim
,
Joowan Kim
, and
Naoki Hirose

Abstract

The effects of external forcing variation on the intrinsic variability in the upper-layer circulation occurring within the East Sea (Sea of Japan) and its physical mechanism are analyzed using numerical experiments. In this study, the experiments were conducted with climatological annual/monthly mean forcings (constant/seasonal forcings). The intrinsic variability is mainly distributed in the meandering regions around the main current path with the comparatively large variability limited to the southern region. The reason of greater intrinsic variability mainly in the southern part of the East Sea than in the northern part is that more energy is required from external forcings to change the thicker upper layer formed in the northern part due to seasonal forcings (strong wind stress and surface heat flux). Although the experiments show slight differences, westward propagation of the Rossby wave appears in areas where the variability is large. The transport of the eddy momentum flux associated with the Rossby wave modulates the strength of the eastward jet and the north–south shift of its axis. Among the external forcings, the volume transport through the Korea/Tsushima Strait is the most important driver of intrinsic variability, and wind stress plays an important role in expanding and strengthening intrinsic variability.

Significance Statement

Intrinsic variability is an important factor in understanding the total variability in the upper-layer circulation in the East Sea (Sea of Japan). However, the physical mechanisms of intrinsic variability remain unclear. This study investigates the physical mechanisms of intrinsic variability occurring within the East Sea. The intrinsic variability occurs mainly around the main current path, especially the meandering current. Based on numerical experiments, the mechanism of the intrinsic variability is represented by the fluctuation in the strength of the eastward current or the north–south movement of its axis caused by the Rossby wave.

Restricted access