Browse

You are looking at 1 - 10 of 6,862 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Jan Jaap Meijer, Helen E. Phillips, Nathaniel L. Bindoff, Stephen R. Rintoul, and Annie Foppert

Abstract

Meanders formed where the Antarctic Circumpolar Current (ACC) interacts with topography have been identified as dynamical hot spots, characterized by enhanced eddy energy, momentum transfer, and cross-front exchange. However, few studies have used observations to diagnose the dynamics of ACC standing meanders. We use a synoptic hydrographic survey and satellite altimetry to explore the momentum and vorticity balance of a Subantarctic Front standing meander, downstream of the Southeast Indian Ridge. Along-stream anomalies of temperature in the upper ocean (150–600 m) show along-stream cooling entering the surface trough and along-stream warming entering the surface crest, while warming is observed from trough to crest in the deeper ocean (600–1500 m). Advection of relative vorticity is balanced by vortex stretching, as found in model studies of meandering currents. Meander curvature is sufficiently large that the flow is in gradient wind balance, resulting in ageostrophic horizontal divergence. This drives downwelling of cooler water along isopycnals entering the surface trough and upwelling of warmer water entering the surface crest, consistent with the observed evolution of temperature anomalies in the upper ocean. Progressive along-stream warming observed between 600 and 1500 m likely reflects cyclogenesis in the deep ocean. Vortex stretching couples the upper and lower water column, producing a low pressure at depth between surface trough and crest and cyclonic flow that carries cold water equatorward in the surface trough and warm water poleward in the surface crest (poleward heat flux). The results highlight gradient–wind balance and cyclogenesis as central to dynamics of standing meanders and their critical role in the ACC momentum and vorticity balance.

Significance Statement

The Antarctic Circumpolar Current (ACC) in the Southern Ocean is a nearly zonal current that encircles Antarctica. It acts as a barrier between warmer water equatorward and colder water poleward. In a few regions where the current encounters strong topographic changes, the current meanders and opens a pathway for heat to travel across the ACC toward Antarctica. We surveyed a meander in the ACC and examined the along-stream change of temperature. In the upper ocean, temperature changes are caused by a vertical circulation, bringing cool water down when entering the surface trough (the part of the meander closest to the equator), and warm water up when exiting the surface trough and entering the surface crest. At depth, cold water is transported equatorward in the surface trough and warm water poleward in the surface crest, leading to a net transport of heat poleward. This study highlights the importance of the secondary circulation within a meander for generating cross-ACC flows and moving heat toward Antarctica.

Open access
Jacob M. Steinberg and Charles C. Eriksen

Abstract

Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.

Significance Statement

Relative to upper-ocean measurements of temperature, salinity, and velocity, deep ocean measurements (below 2000 m) are fewer in number and more difficult to collect. Deep measurements are needed, however, to explore the nature of deep ocean circulation contributing to the global redistribution of heat and to determine how upper-ocean behavior impacts or drives deep motions. Understanding of geographic and temporal variability in vertical structures of currents and eddies enables improved description of energy pathways in the ocean driven by turbulent interactions. In this study, we use newly developed autonomous underwater vehicles, capable of diving to the seafloor and back on a near daily basis, to collect high-resolution full ocean depth measurements at various locations in the North Atlantic. These measurements reveal connections between surface and deep motions, and importantly show their time evolution. Results of analyzing these vertical structures reveal the deep ocean to regularly “feel” events in the upper ocean and permit new comparisons to deep motions in climate models.

Restricted access
Qiong Xia, Gaocong Li, and Changming Dong

Abstract

Mesoscale eddies are one of the most prominent processes in the world’s ocean. The eddy-induced transport of water mass, heat, and energy has a great impact on the ocean and atmosphere. The study of global mass transport by mesoscale eddies is important. However, most existing studies have used Eulerian eddy detection methods. Compared with Lagrangian methods, Eulerian methods fail to distinguish the coherent transport from the incoherent transport induced by eddies. Using a Lagrangian-averaged vorticity deviation (LAVD)-based coherent eddy detection method, this study identifies global coherent mesoscale eddies in the upper 1000 m of the ocean. Based on the eddy dataset, the eddy-induced coherent mass transport is calculated. Compared with Eulerian estimates, the Lagrangian results shown in this study are one order of magnitude smaller. This means that roughly only about 10% of eddy-induced global water mass transport is coherent. The cumulative eddy-induced coherent transport across each latitude or longitude is only around 1 Sv (1 Sv ≡ 106 m3 s−1), which is much less than the transport induced by wind-driven gyres and thermohaline circulation.

Restricted access
Pranav Puthan, Geno Pawlak, and Sutanu Sarkar

Abstract

Large-eddy simulations (LES) are employed to investigate the role of time-varying currents on the form drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form Uc + Utsin(2πftt), where Uc is the mean, Ut is the tidal component, and ft is its frequency. A conical obstacle is considered in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency fs , c. The relative frequency f*=fs,c/ft is varied in a parametric study, which reveals states of high time-averaged form drag coefficient. There is a twofold amplification of the form drag coefficient relative to the no-tide (Ut = 0) case when f* lies between 0.5 and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Kármán vortex street. For instance, the vortex shedding from the obstacle is symmetric when f*=5/12 and strongly asymmetric when f*=5/6. The increase in form drag with increasing f* stems from bottom intensification of the pressure in the obstacle lee which we link to changes in flow separation and near-wake vortices.

Open access
Qiong Xia, Changming Dong, Yijun He, Gaocong Li, and Jihai Dong

Abstract

By using a Lagrangian-averaged vorticity deviation (LAVD)-based vortex detection scheme, rotationally coherent Lagrangian vortices in the South Atlantic Ocean are detected. These vortices act as agents for water transport and can stay coherent in a limited time scale. Our study starts from the life cycle of several long-lived Agulhas rings detected with the LAVD-based vortex detection method. The life cycle of those long-lived Agulhas rings can be separated into two distinct stages: the growing stage and the decaying stage. It is found that at the growing stage, the ambient water spins in and provides effective shielding for the coherent core. The rate of change of material belt width with respect to the detection time scale at the end of the growing stage can represent the decay rate of coherence. We further find a linear relationship between the mean strain rate and the mean square root of kinetic energy (KE1/2). Mean finite-time Lyapunov exponents (FTLE) increase monotonically with the mean strain rate or mean KE1/2. The long existence of the Agulhas rings can be partly attributed to the energetic boundaries around the rings. The ratio of the boundary kinetic energy to the spatial mean kinetic energy (KE/MKE) is also found to be a contributing factor that can influence the lifetime of Agulhas rings. In the retroflection area, the short-lived Agulhas rings might be attributed to the low KE/MKE in this area.

Restricted access
Ran Liu, Guihua Wang, Christopher Chapman, and Changlin Chen

Abstract

The interaction between the Antarctic Circumpolar Current (ACC) jets and mesoscale eddies plays a prominent role in the dynamics of the ACC. However, few studies have investigated the influence of the jets on the statistics of the mesoscale turbulence field. This study combines a mesoscale eddy detection algorithm with the jet-detection technique to extract their interaction in the Southern Ocean from 1993 to 2016. It is found that stronger jet filaments can effectively shorten eddy lifetime, thus introducing a negative correlation between eddy lifetime and matched jet filament velocities. It can also be seen along the pathway of the ACC whether the eddy is located upstream or downstream of topography. A series of numerical experiments suggest that the stronger zonal jet plays the role of a waveguide to facilitate the stronger and faster eastward linear Rossby wave field induced by the mesoscale eddy. A stronger eastward Rossby wave phase speed, enabled by the jet-induced Doppler shift, results in a more rapid loss of eddy energy and shortens the eddy lifetime.

Restricted access
Edward D. Zaron, Ruth C. Musgrave, and Gary D. Egbert

Abstract

The energetics of baroclinic tides are analyzed using the High Resolution Empirical Tide (HRET) model. The HRET model consists of maps of the sea surface height (SSH) anomaly associated with that component of the tides’ baroclinic pressure fields, which are phase locked with the gravitational tidal potential. The dynamical assumptions underpinning the transformation of SSH into corresponding baroclinic velocity and energy flux are examined critically through comparisons with independent information and term balances in the equations of motion. It is found that the HRET-derived phase speed of the mode-1 baroclinic tide agrees closely with the phase speed predicted by the theory for long waves propagating through the observed climatological stratification. The HRET SSH is decomposed into contributions from separate vertical modes, and the energy, energy flux, and energy flux divergence of mode-1 (for M2, S2, K1, and O1) and mode-2 (for M2) tides are computed, with an emphasis on the most accurately determined mode-1 M2. The flux divergence of HRET mode-1 M2, computed as the contour integral of the outbound normal flux around strong generation regions, is found to correspond with independent estimates of the area-integrated barotropic-to-baroclinic-mode-1 conversion, although, there is considerable uncertainty in both the flux divergence and the barotropic-to-baroclinic conversion. Further progress on mapping the baroclinic tidal energetics from altimeter observations will require more dynamically complete descriptions of the baroclinic tides than can be provided by kinematic models of SSH, such as HRET.

Restricted access
Agathe Germe, Joël J.-M. Hirschi, Adam T. Blaker, and Bablu Sinha

Abstract

This study describes the intra- to interannual variability of the Atlantic meridional overturning circulation (AMOC) and the relative dynamical contributions to the total variability in an eddy-resolving 1/12° resolution ocean model. Based on a 53-yr-long hindcast and two 4-yr-long ensembles, we assess the total AMOC variability as well as the variability arising from small differences in the ocean initial state that rapidly imprints on the mesoscale eddy fields and subsequently on large-scale features. This initial-condition-dependent variability will henceforth be referred to as “chaotic” variability. We find that intra-annual AMOC fluctuations are mainly driven by the atmospheric forcing, with the chaotic variability fraction never exceeding 26% of the total variance in the whole meridional Atlantic domain. To understand the nature of the chaotic variability we decompose the AMOC (into its Ekman, geostrophic, barotropic, and residual components). The barotropic and geostrophic AMOC contributions exhibit strong, partly compensating fluctuations, which are linked to chaotic spatial variations of currents over topography. In the North Atlantic, the largest chaotic divergence of ensemble members is found around 24°, 38°, and 64°N. At 26.5°N, where the AMOC is monitored by the RAPID–MOCHA array, the chaotic fraction of the AMOC variability is 10%. This fraction is slightly overestimated with the reconstruction methodology as used in the observations (∼15%). This higher fraction of chaotic variability is due to the barotropic contribution not being completely captured by the monitoring system. We look at the strong AMOC decline observed in 2009/10 and find that the ensemble spread (our measure for chaotic variability) was not particularly large during this event.

Significance Statement

The ocean is characterized by ubiquitous swirls (eddies) with diameters ranging from more than 100 km (low latitudes) to a few tens of kilometers (high latitudes). There is limited predictability of the timing and location of such eddies. They introduce unpredictable (“chaotic”) variability, which affects the ocean circulation on a wide range of spatial and temporal scales. Any observations of ocean currents contain a fraction of chaotic variability. However, it is, in general, not possible to quantify this chaotic variability from observations. Here we use a set of simulations performed with a state-of-the-art ocean computer model to estimate the fraction of chaotic variability in the amount of warm northward flowing near-surface seawater that delivers large amounts of heat to the North Atlantic, known to scientists as the Atlantic meridional overturning circulation (AMOC). We find that about 10%–25% of the AMOC variance is likely to be chaotic.

Open access
Ryan Abernathey, Christopher Bladwell, Gary Froyland, and Konstantinos Sakellariou

Abstract

The connectivity between ocean basins and subbasin regions strongly influences the transport of ocean tracers and thus plays a role in regulating climate and ocean ecosystems. We describe the application of a new technique from nonlinear dynamical systems to infer the Lagrangian connectivity of the deep global ocean. We approximate the dynamic Laplacian using Argo trajectories from January 2011 to January 2017 and extract the eight dominant coherent (or dynamically self-connected) regions at 1500 m depth. Our approach overcomes issues such as sparsity of observed data and floats continually leaving and entering the dataset; only 10% of floats record continuously for the full six years. The identified coherent regions maximally trap water within them over the six-year time frame, providing a distinct analysis of the deep global ocean and relevant information for planning future float deployment. A key result is that the coherent regions are highly stationary, showing minimal displacement over the six-year period. Although our study is concerned with ocean circulation at a multiyear, global scale, the dynamic Laplacian approach may be applied at any temporal or spatial scale to identify coherent structures in ocean flow from positional time series information arising from observations or models.

Restricted access
Qinbo Xu, Chun Zhou, Wei Zhao, Qianwen Hu, Xin Xiao, Dongqing Zhang, Fan Yang, Xiaodong Huang, and Jiwei Tian

Abstract

Intraseasonal fluctuation with periods of ∼90 days in the South China Sea (SCS) basin is investigated based on an array of seven subsurface moorings. In the deep layer, the 90-day fluctuation is revealed to contribute significantly to the variability in the current, accounting for ∼69% of the subinertial variance. This fluctuation propagates westward along the mooring section with a phase speed of ∼4.6 cm s−1. In the upper layer, the fluctuation also propagates westward with a similar phase speed, but with opposite phase to that of the deep layer. These results suggest that the 90-day fluctuation regulating the abyssal SCS should be the first mode baroclinic Rossby wave. A set of experiments based on a two-layer dynamic model reveal that both the local wind stress curl and the flow originating from the North Pacific through the Luzon Strait contribute to drive the 90-day fluctuation in the deep SCS, while the latter plays the dominant role.

Open access