Browse

You are looking at 1 - 2 of 2 items for :

  • Cloud System Evolution over the Trades (CSET) x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Robert Wood, Kuan-Ting O, Christopher S. Bretherton, Johannes Mohrmann, Bruce. A. Albrecht, Paquita Zuidema, Virendra Ghate, Chris Schwartz, Ed Eloranta, Susanne Glienke, Raymond A. Shaw, Jacob Fugal, and Patrick Minnis

Abstract

A common feature of the stratocumulus-to-cumulus transition (SCT) is the presence of layers in which the concentration of particles larger than 0.1 μm is below 10 cm−3. These ultraclean layers (UCLs) are explored using aircraft observations from 14 flights of the NSF–NCAR Gulfstream V (G-V) aircraft between California and Hawaii. UCLs are commonly located in the upper part of decoupled boundary layers, with coverage increasing from less than 5% within 500 km of the California coast to ~30%–60% west of 130°W. Most clouds in UCLs are thin, horizontally extensive layers containing drops with median volume radii ranging from 15 to 30 μm. Many UCL clouds are optically thin and do not fully attenuate the G-V lidar and yet are frequently detected with a 94-GHz radar with a sensitivity of around −30 dBZ. Satellite data indicate that UCL clouds have visible reflectances of ~0.1–0.2 and are often quasi laminar, giving them a veil-like appearance. These optically thin veil clouds exist for 1–3 h or more, are associated with mesoscale cumulus clusters, and likely grow by spreading under strong inversions. Active updrafts in cumulus (Cu) clouds have droplet concentrations of ~25–50 cm−3. Collision–coalescence in the Cu and later sedimentation in the thinner UCL clouds are likely the key processes that remove droplets in UCL clouds. UCLs are relatively quiescent, and a lack of mixing with dry air above and below the cloud may help to explain their longevity. The very low and highly variable droplet concentrations in UCL clouds, together with their low geometrical and optical thickness, make these clouds particularly challenging to represent in large-scale models.

Full access
Kuan-Ting O, Robert Wood, and Christopher S. Bretherton

Abstract

In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.

Full access