Browse

You are looking at 1 - 6 of 6 items for :

  • Journal of the Atmospheric Sciences x
  • Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) x
  • Refine by Access: All Content x
Clear All
Kirstin Kober
and
George C. Craig

Abstract

Stochastic perturbations allow for the representation of small-scale variability due to unresolved physical processes. However, the properties of this variability depend on model resolution and weather regime. A physically based method is presented for introducing stochastic perturbations into kilometer-scale atmospheric models that explicitly account for these dependencies. The amplitude of the perturbations is based on information obtained from the model’s subgrid turbulence parameterization, while the spatial and temporal correlations are based on physical length and time scales of the turbulent motions. The stochastic perturbations lead to triggering of additional convective cells and improved precipitation amounts in simulations of two days with weak synoptic forcing of convection but different amounts of precipitation. The perturbations had little impact in a third case study, where precipitation was mainly associated with a cold front. In contrast, an unphysical version of the scheme with constant perturbation amplitude performed poorly since there was no perturbation amplitude that would give improved amounts of precipitation during the day without generating spurious convection at other times.

Full access
Franziska Teubler
and
Michael Riemer

Abstract

Rossby wave packets (RWPs) have been associated with increased atmospheric predictability but also with the growth and propagation of forecast uncertainty. To address the important question of under which conditions RWPs imply high and low predictability, a potential vorticity–potential temperature (PV–θ) framework is introduced to diagnose RWP dynamics. Finite-amplitude RWPs along the midlatitude waveguide are considered and are represented by the synoptic-scale, wavelike undulations of the tropopause. The evolution of RWPs is examined by the amplitude evolution of the individual troughs and ridges. Troughs and ridges are identified as PV anomalies on θ levels intersecting the midlatitude tropopause. By partitioning the PV-tendency equation, individual contributions to the amplitude evolution are identified. A novel aspect is that the important role of the divergent flow and the diabatic PV modification is quantified explicitly. Arguably, prominent upper-tropospheric divergent flow is associated to a large extent with latent-heat release below and can thus be considered as an indirect diabatic impact. A case study of an RWP evolution over 7 days illustrates the PV–θ diagnostic. In general, baroclinic coupling and, important, the divergent flow make contributions to the amplitude evolution of individual troughs and ridges that are comparable in magnitude to the wave’s group propagation. Diabatic PV modification makes a subordinate contribution to the evolution. The relative importance of the different processes exhibits considerable variability between individual troughs and ridges. A discussion of the results in light of recent studies on forecast errors and predictability concludes the paper.

Full access
Michael Riemer
,
Marlene Baumgart
, and
Sven Eiermann

Abstract

During extratropical transition (ET), tropical cyclones exert a significant impact on the midlatitude circulation. Archetypical features of this impact are jet streak formation, amplification of the downstream trough, and modification of the associated downstream cyclogenesis. This study investigates the relative importance of the jet streak and the upper-level trough for cyclone development by quantifying the respective contributions to midtropospheric vertical motion using the Q-vector partitioning by J. C. Jusem and R. Atlas. Their framework is here extended from quasigeostrophic theory to alternative balance. The Q vector under alternative balance involves the nondivergent wind, instead of the geostrophic wind, and therefore represents more accurately the balanced dynamics associated with vertical motion, in particular downstream of ET where the flow often exhibits significant curvature associated with the amplified trough.

An idealized ET scenario and three real cases, the cyclones downstream of Hanna (2008), Choi-wan (2008), and Jangmi (2009), are analyzed. In all cases, the trough plays a prominent role in cyclone development. The jet streak plays a prominent, favorable role in the idealized ET scenario and downstream of Hanna. In contrast, the role of the jet streak downstream of Choi-wan is clearly of secondary importance. Interestingly, downstream of Jangmi the jet streak has a prominent but detrimental impact. It is concluded that amplified jet streaks associated with ET have the potential to be of significant importance for downstream cyclone development. The few cases considered in this study, however, point to a large case-to-case variability of the role of the jet streak.

Full access
Olivia Martius
and
Heini Wernli

Abstract

Tropical, subtropical, and extratropical dynamical processes govern the synoptic-scale evolution of the subtropical jet stream(s) over Africa. However, the relative importance of the respective effects is still under debate and is the focus of this study. Interim ECMWF Re-Analysis (ERA-Interim) data are used to calculate backward trajectories from the subtropical jet over Africa during winter 2005/06. The trajectories allow for studying the jet dynamics from both a potential vorticity (PV) and an angular momentum point of view and for linking the two theoretical frameworks.

Three cases of synoptic-scale Rossby wave breaking in the extratropics and subtropics are presented in detail. They illustrate basic flow configurations where (i) the subtropical jet is mainly forced by tropical dynamics, (ii) extratropical forcing contributes substantially to the jet acceleration, and (iii) strong diabatic processes in the subtropics impact the jet.

The case study results are then generalized for the entire winter season. The main findings are as follows: (i) Approximately 41% of the trajectories reach the subtropical jet from the deep tropics and for these trajectories the nonconservation of angular momentum M due to eddy forcing leads to a decrease of M by about 5%. (ii) A nonnegligible fraction of roughly 18% of the trajectories reaches the subtropical jet from the extratropics. (iii) Wave breaking is instrumental for bringing extratropical, high-PV air southward. (iv) Diabatic processes in the subtropics have a negligible direct effect on the upper-level PV. This is in contrast to observations from the extratropics and might be the consequence of the small planetary vorticity in the tropics and subtropics.

Full access
Jana ÄŒampa
and
Heini Wernli

Abstract

Development of extratropical cyclones can be seen as an interplay of three positive potential vorticity anomalies: an upper-level stratospheric intrusion, low-tropospheric diabatically produced potential vorticity (PV), and a warm anomaly at the surface acting as a surrogate PV anomaly. This study, based on the interim ECMWF Re-Analysis (ERA-Interim) dataset, quantifies the amplitude of the PV anomalies of mature extratropical cyclones in different regions in the Northern Hemisphere on a climatological basis.

A tracking algorithm is applied to sea level pressure (SLP) fields to identify cyclone tracks. Surface potential temperature anomalies Δθ and vertical profiles of PV anomalies ΔPV are calculated at the time of the cyclones’ minimum SLP in a vertical cylinder around the surface cyclone center. To compare the cyclones’ characteristics they are grouped according to their location and intensity. Composite ΔPV profiles are calculated for each region and intensity class at the time of minimum SLP and during the cyclone intensification phase.

In the mature stage all three anomalies are on average larger for intense than for weak winter cyclones [e.g., 0.6 versus 0.2 potential vorticity units (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) at lower levels, and 1.5 versus 0.5 PVU at upper levels]. The regional variability of the cyclones’ vertical structure and the profile evolution is prominent (cyclones in some regions are more sensitive to the amplitude of a particular anomaly than in other regions). Values of Δθ and low-level ΔPV are on average larger in the western parts of the oceans than in the eastern parts. Results for summer are qualitatively similar, except for distinctively weaker surface Δθ values.

Full access
Simon T. K. Lang
,
Sarah C. Jones
,
Martin Leutbecher
,
Melinda S. Peng
, and
Carolyn A. Reynolds

Abstract

The sensitivity of singular vectors (SVs) associated with Hurricane Helene (2006) to resolution and diabatic processes is investigated. Furthermore, the dynamics of their growth are analyzed. The SVs are calculated using the tangent linear and adjoint model of the integrated forecasting system (IFS) of the European Centre for Medium-Range Weather Forecasts with a spatial resolution up to TL255 (~80 km) and 48-h optimization time. The TL255 moist (diabatic) SVs possess a three-dimensional spiral structure with significant horizontal and vertical upshear tilt within the tropical cyclone (TC). Also, their amplitude is larger than that of dry and lower-resolution SVs closer to the center of Helene. Both higher resolution and diabatic processes result in stronger growth being associated with the TC compared to other flow features. The growth of the SVs in the vicinity of Helene is associated with baroclinic and barotropic mechanisms. The combined effect of higher resolution and diabatic processes leads to significant differences of the SV structure and growth dynamics within the core and in the vicinity of the TC. If used to initialize ensemble forecasts with the IFS, the higher-resolution moist SVs cause larger spread of the wind speed, track, and intensity of Helene than their lower-resolution or dry counterparts. They affect the outflow of the TC more strongly, resulting in a larger downstream impact during recurvature. Increasing the resolution or including diabatic effects degrades the linearity of the SVs. While the impact of diabatic effects on the linearity is small at low resolution, it becomes large at high resolution.

Full access