Browse

You are looking at 1 - 10 of 12,531 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Zhibo Zhang
,
David B. Mechem
,
J. Christine Chiu
, and
Justin A. Covert

Abstract

Because of the coarse grid size of Earth system models (ESMs), representing warm-rain processes in ESMs is a challenging task involving multiple sources of uncertainty. Previous studies evaluated warm-rain parameterizations mainly according to their performance in emulating collision–coalescence rates for local droplet populations over a short period of a few seconds. The representativeness of these local process rates comes into question when applied in ESMs for grid sizes on the order of 100 km and time steps on the order of 20–30 min. We evaluate several widely used warm-rain parameterizations in ESM application scenarios. In the comparison of local and instantaneous autoconversion rates, the two parameterization schemes based on numerical fitting to stochastic collection equation (SCE) results perform best. However, because of Jessen’s inequality, their performance deteriorates when grid-mean, instead of locally resolved, cloud properties are used in their simulations. In contrast, the effect of Jessen’s inequality partly cancels the overestimation problem of two semianalytical schemes, leading to an improvement in the ESM-like comparison. In the assessment of uncertainty due to the large time step of ESMs, it is found that the rainwater tendency simulated by the SCE is roughly linear for time steps smaller than 10 min, but the nonlinearity effect becomes significant for larger time steps, leading to errors up to a factor of 4 for a time step of 20 min. After considering all uncertainties, the grid-mean and time-averaged rainwater tendency based on the parameterization schemes is mostly within a factor of 4 of the local benchmark results simulated by SCE.

Open access
Sylvain Dupont
,
Mark R. Irvine
, and
Caroline Bidot

Abstract

Turbulence in canopy plays a crucial role in biosphere–atmosphere exchanges. Traditionally, canopy turbulence has been analyzed under stationary conditions based on atmospheric thermal stability, disregarding the time of the day and the atmospheric boundary layer (ABL) depth, although recent studies have suggested that daytime canopy turbulence might be influenced by ABL-scale motions. The morning transition offers an intriguing period when the ABL grows and when an increasing influence of large-scale motions on canopy turbulence might be anticipated. Using large-eddy simulations resolving both canopy and ABL turbulence, we investigate here how the turbulence and exchanges at the canopy top change along the morning transition according to the wind intensity. Under significant wind, simulations show that canopy turbulence and exchanges are dominated by mixing-layer-type motions whose characteristics remain constant during the morning transition even though ABL-scale motions imprint on the canopy’s instantaneous velocity fields as the ABL grows. Under low wind, the canopy turbulence is dominated by plumes, whose horizontal sizes extend with the ABL, while their vertical sizes reach a limit before the morning transition ends. In the early morning, canopy-top exchanges are influenced by sources from both the canopy top and the ABL entrainment zone, explaining some of the dissimilarity in turbulent transport between scalars, apart from the differences in the location of canopy scalar sources. When reaching the residual layer, the ABL grows quicker, with intense water vapor and carbon dioxide exchanges, dominated by large-scale motions penetrating deep within the canopy, releasing into the atmosphere the nocturnal accumulated carbon dioxide.

Restricted access
Xavier Chartrand
,
Louis-Philippe Nadeau
, and
Antoine Venaille

Abstract

The quasi-biennial oscillation (QBO) is understood to result from wave–mean-flow interactions, but the reasons for its relative stability remain a subject of ongoing debate. In addition, consensus has yet to be reached regarding the respective roles of different equatorial wave types in shaping the QBO’s characteristics. Here, we employ Holton–Lindzen–Plumb’s quasilinear model to shed light on the robustness of periodic behavior in the presence of multiple wave forcings. A comprehensive examination of the various dynamical regimes in this model reveals that increased vertical wave propagation at higher altitudes favors periodicity. In the case of single standing wave forcing, enhanced vertical propagation is controlled by the wave attenuation length scale. The occurrence of nonperiodic states at high forcing amplitudes is explained by the excitation of high vertical unstable modes. Increasing the attenuation length scale prevents the emergence of such modes. When multiple wave forcing is considered, the mean flow generated by a dominant primary wave facilitates greater vertical propagation of a perturbation wave. Raising the altitude where most of the wave damping occurs favors periodicity by preventing the development of secondary jets responsible for the aperiodic behavior. This mechanism underscores the potential role of internal gravity waves in supporting the periodicity of a QBO primarily driven by planetary waves.

Restricted access
Wojciech W. Grabowski
,
Yongjoon Kim
, and
Seong Soo Yum

Abstract

Numerical simulations of turbulent moist Rayleigh–Bénard convection driving CCN activation and droplet growth in the laboratory Pi chamber are discussed. Supersaturation fluctuations come from isobaric mixing of warm and humid air rising from the lower boundary with colder air featuring lower water vapor concentrations descending from the upper boundary. Lagrangian particle–based microphysics is used to represent the growth of haze CCN and cloud droplets with kinetic, solute, and surface tension effects included. Dry CCN spectra in the range between 2- and 200-nm radii from field observations are considered. Increasing the total CCN concentration from pristine to polluted conditions results in an increase in the droplet concentration and reduction in the mean droplet radius and spectral width. These are in agreement with Pi chamber observations and numerical simulations, as well as with numerous past studies of CCN cloud-base activation in natural clouds. The key result is that a relatively small fraction of the available CCN is activated in the Pi chamber fluctuating supersaturations, from about a half in the pristine case to only a 10th in the polluted case. The activation fraction as a function of the dry CCN radius is similar in all simulations, close to zero at the CCN small end, increasing to a maximum at CCN radius around 50 nm, and decreasing to close to zero at the large CCN end. This is explained as too small supersaturations to activate small CCN as in natural clouds and insufficient time to allow large CCN reaching the critical radius.

Significance Statement

Impact of turbulence on the formation and growth of cloud droplets is an important cloud physics problem. Laboratory experiments in the Michigan Technological University cloud chamber provide key insights into this problem. Numerical simulations of cloud chamber processes discussed in this paper complement laboratory experiments by providing insights difficult or impossible to obtain in the laboratory. The study contrasts the formation and growth of cloud droplets in the laboratory cloud chamber with processes taking place in natural clouds. The differences documented in this paper pose questions concerning the impact of turbulence on the formation and growth of cloud droplets as a result of interactions of clouds with their environment.

Restricted access
Georg S. Voelker
,
Gergely Bölöni
,
Young-Ha Kim
,
Günther Zängl
, and
Ulrich Achatz

Abstract

Parameterizations for internal gravity waves in atmospheric models are traditionally subject to a number of simplifications. Most notably, they rely on both neglecting wave propagation and advection in the horizontal direction (single-column assumption) and an instantaneous balance in the vertical direction (steady-state assumption). While these simplifications are well justified to cover some essential dynamic effects and keep the computational effort small, it has been shown that both mechanisms are potentially significant. In particular, the recently introduced Multiscale Gravity Wave Model (MS-GWaM) successfully applied ray-tracing methods in a novel type of transient but columnar internal gravity wave parameterization (MS-GWaM-1D). We extend this concept to a three-dimensional version of the parameterization (MS-GWaM-3D) to simulate subgrid-scale nonorographic internal gravity waves. The resulting global wave model—implemented into the weather forecast and climate code Icosahedral Nonhydrostatic (ICON)—contains three-dimensional transient propagation with accurate flux calculations, a latitude-dependent background source, and convectively generated waves. MS-GWaM-3D helps reproduce expected temperature and wind patterns in the mesopause region in the climatological zonal mean state and thus proves a viable internal gravity wave (IGW) parameterization. Analyzing the global wave action budget, we find that horizontal wave propagation is as important as vertical wave propagation. The corresponding wave refraction includes previously missing but well-known effects such as wave refraction into the polar jet streams. On a global scale, three-dimensional wave refraction leads to a horizontal flow-dependent redistribution of waves such that the structures of the zonal mean wave drag and consequently the zonal mean winds are modified.

Open access
Danyang Wang
and
Daniel R. Chavas

Abstract

Tropical cyclones are known to expand to an equilibrium size on the f plane, but the expansion process is not understood. In this study, an analytical model for tropical cyclone outer-size expansion on the f plane is proposed. Conceptually, the storm expands because the imbalance between latent heating and radiative cooling drives a lateral inflow that imports absolute vorticity. Volume-integrated latent heating increases more slowly with size than radiative cooling, and hence, the storm expands toward an equilibrium size. The predicted expansion rate is given by the ratio of the difference in size from its equilibrium value rt ,eq to an environmentally determined time scale τ rt of 10–15 days. The model is fully predictive if given a constant rt ,eq, which can also be estimated environmentally. The model successfully captures the first-order size evolution across a range of numerical simulation experiments in which the potential intensity and f are varied. The model predictions of the dependencies of lateral inflow velocity and expansion rate on latent heating rate are also compared well with numerical simulations. This model provides a useful foundation for understanding storm size dynamics in nature.

Open access
Sofia Menemenlis
,
Gabriel A. Vecchi
,
Kun Gao
,
James A. Smith
, and
Kai-Yuan Cheng

Abstract

The extratropical stage of Hurricane Ida (2021) brought extreme subdaily rainfall and devastating flooding to parts of eastern Pennsylvania, New Jersey, and New York. We investigate the predictability and character of this event using 31-member ensembles of perturbed initial condition hindcasts with the Tropical Atlantic version of GFDL’s System for High-resolution prediction on Earth-to-Local Domains (T-SHiELD), a ∼13-km global weather forecast model with a ∼3-km nested grid. At lead times of up to 4 days, the ensembles are able to capture the most extreme observed hourly and daily rainfall accumulations but are negatively biased in the spatial extent of heavy precipitation. Large intraensemble differences in the magnitudes and locations of simulated extremes suggest that although impacts were highly localized, risks were widespread. In Ida’s tropical stage, interensemble spread in extreme hourly rainfall is well predicted by large-scale moisture convergence; by contrast, in Ida’s extratropical stage, the most extreme rainfall is governed by mesoscale processes that exhibit chaotic and diverse forms across the ensembles. Our results are relevant to forecasting and communication in advance of extratropical transition and imply that flood preparedness efforts should account for the widespread possibility of severe localized impacts.

Significance Statement

After making landfall in Louisiana, Hurricane Ida (2021) transitioned to an extratropical storm which brought extreme rainfall and unprecedented flooding to parts of the northeastern United States. To what extent were these impacts knowable in advance? We use a numerical weather model with very high resolution to produce ensemble hindcasts—simulations of a past weather event initialized with tiny perturbations to the initial conditions, representing dozens of equally plausible versions of Ida’s extratropical stage. We find that the observed hourly and daily rainfall maxima fall within the simulated outcomes of ensembles initialized with lead times of about 4 days or less. The location and intensity of the heaviest rainfall vary widely across these ensembles, suggesting that many locations across the Northeast were exposed to some likelihood of extreme rainfall.

Open access
David C. Fritts
,
Ling Wang
,
Tom Lund
, and
Marvin A. Geller

Abstract

A companion paper by Fritts et al. reviews extensive evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics at multiple altitudes in the atmosphere and in the oceans that reveal these dynamics to be widespread. A second companion paper by Fritts and Wang reveals KHI T&K events at larger and smaller scales to arise on multiple highly stratified sheets in a direct numerical simulation (DNS) of idealized, multiscale gravity wave–fine structure interactions. These studies reveal the diverse environments in which KHI T&K dynamics arise and suggest their potentially ubiquitous occurrence throughout the atmosphere and oceans. This paper describes a DNS of multiple KHI evolutions in wide and narrow domains enabling and excluding T&K dynamics. These DNSs employ common initial conditions but are performed for decreasing Reynolds numbers (Re) to explore whether T&K dynamics enable enhanced KHI-induced turbulence where it would be weaker or not otherwise occur. The major results are that KHI T&K dynamics extend elevated turbulence intensities and energy dissipation rates ε to smaller Re. We expect these results to have important implications for improving parameterizations of KHI-induced turbulence in the atmosphere and oceans.

Significance Statement

Turbulence due to small-scale shear flows plays important roles in the structure and variability of the atmosphere and oceans extending to large spatial and temporal scales. New modeling reveals that enhanced turbulence accompanies Kelvin–Helmholtz instabilities (KHIs) that arise on unstable shear layers and exhibit what were initially described as “tubes” and “knots” (T&K) when they were first observed in early laboratory experiments. We perform new modeling to explore two further aspects of these dynamics: 1) can KHI T&K dynamics increase turbulence intensities compared to KHI without T&K dynamics for the same initial fields and 2) can KHI T&K dynamics enable elevated turbulence and energy dissipation extending to more viscous flows? We show here that the answer to both questions is yes.

Open access
Yevgenii Rastigejev
and
Sergey A. Suslov

Abstract

This study focuses on the influence of the sea spray polydispersity on the vertical transport of momentum in a turbulent marine atmospheric boundary layer in high-wind conditions of a hurricane. The Eulerian multifluid model treating air and spray droplets of different sizes as interacting interpenetrating continua is developed and its numerical solutions are analyzed. Several droplet size distribution spectra and correlation laws relating wind speed and spray production intensity are considered. Polydisperse model solutions have confirmed the difference between the roles small and large spray droplets play in modifying the turbulent momentum transport that have been previously identified by monodisperse spray models. The obtained results have also provided a physical explanation for the previously unreported phenomenon of the formation of thin low-eddy-viscosity “sliding” layers in strongly turbulent boundary layer flows laden with predominantly fine spray.

Significance Statement

Achieving better accuracy in hurricane forecasts requires an in-depth understanding and accurate modeling of the ocean spray effect on the vertical fluxes of momentum and heat in a hurricane boundary layer. It has been shown that this effect depends on the size distribution of spray droplets, also known as spray polydispersity. This study aims to investigate the influence of a polydisperse spray on the vertical momentum transport within hurricane boundary layers by employing a modern theory of turbulent disperse multiphase flows.

Restricted access
Hugh Morrison
,
Kamal Kant Chandrakar
,
Shin-Ichiro Shima
,
Piotr Dziekan
, and
Wojciech W. Grabowski

Abstract

Various coalescence methods for Lagrangian microphysics schemes are tested in box and large-eddy simulation (LES) models, including the stochastic all-or-nothing (AON) superdroplet method (SDM) and a deterministic version of SDM (dSDM) that applies a fractional approach similar to the average impact method. In LES, variabilities driven by microphysics and by flow realizations are separated using the “piggybacking” technique. Rain initiation averaged over many realizations of the box model is delayed, and rain variability increases as the number of superdrops per collision volume N SD is decreased using SDM. In contrast, rain initiation time using SDM in LES is insensitive to N SD for 32 ≤ N SD ≤ 512. This is explained through the interaction between LES grid boxes, each acting as a separate collision volume. Variability across the ensemble of LES collision volumes using SDM results in rain quickly initiating in some of the LES grid cells at low N SD and leading to a similar overall timing of rain initiation from the cloud compared to simulations with high N SD. There is a ∼20% decrease in the total rain mass and mean rain flux as N SD is increased from 32 to 256, with little additional change as N SD is increased from 256 to 512. The fractional coalescence approach in dSDM leads to reduced microphysical variability and a 15–18-min delay in rain initiation compared to SDM. An additional LES ensemble with microphysical variability feeding back to the dynamics shows that flow variability dominates the impact of microphysical variability on rain properties. Thus, flow variability must be constrained to isolate impacts of microphysical variability.

Significance Statement

An emerging tool in cloud microphysics modeling represents drops by computational particles called “superdroplets” that evolve in the modeled flow. Recent studies have documented that different superdroplet models produce widely varying predictions of rain. Understanding these differences is an important step in the wider adoption of these models by the community. Here, we examine different methods for representing droplet collision-coalescence in a superdroplet model and sensitivity to the number of superdroplets employed. The timing of rain initiation is insensitive to the superdroplet number in 3D cloud simulations, but rain is substantially delayed using a coalescence method that limits random variability in droplet collisions. We also show that flow variability must be constrained to isolate impacts of microphysical variability on rain properties.

Restricted access