Browse

You are looking at 1 - 2 of 2 items for :

  • Journal of Climate x
  • Hans-Ertel Centre: Interdisciplinary Research in Weather Forecasting and Climate Monitoring x
  • Refine by Access: All Content x
Clear All
Jesús Vergara-Temprado
,
Nikolina Ban
,
Davide Panosetti
,
Linda Schlemmer
, and
Christoph Schär

Abstract

The “gray zone” of convection is defined as the range of horizontal grid-space resolutions at which convective processes are partially but not fully resolved explicitly by the model dynamics (typically estimated from a few kilometers to a few hundred meters). The representation of convection at these scales is challenging, as both parameterizing convective processes or relying on the model dynamics to resolve them might cause systematic model biases. Here, a regional climate model over a large European domain is used to study model biases when either using parameterizations of deep and shallow convection or representing convection explicitly. For this purpose, year-long simulations at horizontal resolutions between 50- and 2.2-km grid spacing are performed and evaluated with datasets of precipitation, surface temperature, and top-of-the-atmosphere radiation over Europe. While simulations with parameterized convection seem more favorable than using explicit convection at around 50-km resolution, at higher resolutions (grid spacing ≤ 25 km) models tend to perform similarly or even better for certain model skills when deep convection is turned off. At these finer scales, the representation of deep convection has a larger effect in model performance than changes in resolution when looking at hourly precipitation statistics and the representation of the diurnal cycle, especially over nonorographic regions. The shortwave net radiative balance at the top of the atmosphere is the variable most strongly affected by resolution changes, due to the better representation of cloud dynamical processes at higher resolutions. These results suggest that an explicit representation of convection may be beneficial in representing some aspects of climate over Europe at much coarser resolutions than previously thought, thereby reducing some of the uncertainties derived from parameterizing deep convection.

Open access
A. Rinke
,
B. Segger
,
S. Crewell
,
M. Maturilli
,
T. Naakka
,
T. Nygård
,
T. Vihma
,
F. Alshawaf
,
G. Dick
,
J. Wickert
, and
J. Keller

Abstract

Arctic trends of integrated water vapor were analyzed based on four reanalyses and radiosonde data over 1979–2016. Averaged over the region north of 70°N, the Arctic experiences a robust moistening trend that is smallest in March (0.07 ± 0.06 mm decade−1) and largest in August (0.33 ± 0.18 mm decade−1), according to the reanalyses’ median and over the 38 years. While the absolute trends are largest in summer, the relative ones are largest in winter. Superimposed on the trend is a pronounced interannual variability. Analyzing overlapping 30-yr subsets of the entire period, the maximum trend has shifted toward autumn (September–October), which is related to an accelerated trend over the Barents and Kara Seas. The spatial trend patterns suggest that the Arctic has become wetter overall, but the trends and their statistical significance vary depending on the region and season, and drying even occurs over a few regions. Although the reanalyses are consistent in their spatiotemporal trend patterns, they substantially disagree on the trend magnitudes. The summer and the Nordic and Barents Seas, the central Arctic Ocean, and north-central Siberia are the season and regions of greatest differences among the reanalyses. We discussed various factors that contribute to the differences, in particular, varying sea level pressure trends, which lead to regional differences in moisture transport, evaporation trends, and differences in data assimilation. The trends from the reanalyses show a close agreement with the radiosonde data in terms of spatiotemporal patterns. However, the scarce and nonuniform distribution of the stations hampers the assessment of central Arctic trends.

Open access