Browse

You are looking at 1 - 10 of 48 items for :

  • Journal of Climate x
  • CCSM4/CESM1 x
  • Refine by Access: All Content x
Clear All
Alicia R. Karspeck
,
Steve Yeager
,
Gokhan Danabasoglu
,
Tim Hoar
,
Nancy Collins
,
Kevin Raeder
,
Jeffrey Anderson
, and
Joseph Tribbia

Abstract

The authors report on the implementation and evaluation of a 48-member ensemble adjustment Kalman filter (EAKF) for the ocean component of the Community Climate System Model, version 4 (CCSM4). The ocean assimilation system described was developed to support the eventual generation of historical ocean-state estimates and ocean-initialized climate predictions with the CCSM4 and its next generation, the Community Earth System Model (CESM). In this initial configuration of the system, daily subsurface temperature and salinity data from the 2009 World Ocean Database are assimilated into the ocean model from 1 January 1998 to 31 December 2005. Each ensemble member of the ocean is forced by a member of an independently generated CCSM4 atmospheric EAKF analysis, making this a loosely coupled framework. Over most of the globe, the time-mean temperature and salinity fields are improved relative to an identically forced ocean model simulation without assimilation. This improvement is especially notable in strong frontal regions such as the western and eastern boundary currents. The assimilation system is most effective in the upper 1000 m of the ocean, where the vast majority of in situ observations are located. Because of the shortness of this experiment, ocean variability is not discussed. Challenges that arise from using an ocean model with strong regional biases, coarse resolution, and low internal variability to assimilate real observations are discussed, and areas of ongoing improvement for the assimilation system are outlined.

Full access
William H. Lipscomb
,
Jeremy G. Fyke
,
Miren Vizcaíno
,
William J. Sacks
,
Jon Wolfe
,
Mariana Vertenstein
,
Anthony Craig
,
Erik Kluzek
, and
David M. Lawrence

Abstract

The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and downscaled to the ice sheet grid. Ice sheet evolution is governed by the shallow-ice approximation with thermomechanical coupling and basal sliding. This paper describes and evaluates the initial model implementation for the Greenland Ice Sheet (GIS). The ice sheet model was spun up using the SMB from a coupled CESM simulation with preindustrial forcing. The model's sensitivity to three key ice sheet parameters was explored by running an ensemble of 100 GIS simulations to quasi equilibrium and ranking each simulation based on multiple diagnostics. With reasonable parameter choices, the steady-state GIS geometry is broadly consistent with observations. The simulated ice sheet is too thick and extensive, however, in some marginal regions where the SMB is anomalously positive. The top-ranking simulations were continued using surface forcing from CESM simulations of the twentieth century (1850–2005) and twenty-first century (2005–2100, with RCP8.5 forcing). In these simulations the GIS loses mass, with a resulting global-mean sea level rise of 16 mm during 1850–2005 and 60 mm during 2005–2100. This mass loss is caused mainly by increased ablation near the ice sheet margin, offset by reduced ice discharge to the ocean. Projected sea level rise is sensitive to the initial geometry, showing the importance of realistic geometry in the spun-up ice sheet.

Full access
Matthew C. Long
,
Keith Lindsay
,
Synte Peacock
,
J. Keith Moore
, and
Scott C. Doney

Abstract

Ocean carbon uptake and storage simulated by the Community Earth System Model, version 1–Biogeochemistry [CESM1(BGC)], is described and compared to observations. Fully coupled and ocean-ice configurations are examined; both capture many aspects of the spatial structure and seasonality of surface carbon fields. Nearly ubiquitous negative biases in surface alkalinity result from the prescribed carbonate dissolution profile. The modeled sea–air CO2 fluxes match observationally based estimates over much of the ocean; significant deviations appear in the Southern Ocean. Surface ocean pCO2 is biased high in the subantarctic and low in the sea ice zone. Formation of the water masses dominating anthropogenic CO2 (Cant) uptake in the Southern Hemisphere is weak in the model, leading to significant negative biases in Cant and chlorofluorocarbon (CFC) storage at intermediate depths. Column inventories of Cant appear too high, by contrast, in the North Atlantic. In spite of the positive bias, this marks an improvement over prior versions of the model, which underestimated North Atlantic uptake. The change in behavior is attributable to a new parameterization of density-driven overflows. CESM1(BGC) provides a relatively robust representation of the ocean–carbon cycle response to climate variability. Statistical metrics of modeled interannual variability in sea–air CO2 fluxes compare reasonably well to observationally based estimates. The carbon cycle response to key modes of climate variability is basically similar in the coupled and forced ocean-ice models; however, the two differ in regional detail and in the strength of teleconnections.

Full access
Shih-Yu Wang
,
Michelle L'Heureux
, and
Jin-Ho Yoon

Abstract

Using multiple observational and model datasets, the authors document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTAs) in the western North Pacific (WNP) and the development of the El Niño–Southern Oscillation (ENSO) in the following year. The increased WNP–ENSO association emerged in the mid-twentieth century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model, version 1 (CESM1), replicate the WNP–ENSO association and indicate that greenhouse gases (GHGs) are largely responsible for this observed increase. The authors speculate that shifts in the location of the largest positive SST trends between the subtropical and tropical western Pacific impact the low-level circulation in a manner that reinforces the link between the WNP and the development of ENSO. A strengthened GHG-driven relationship with the WNP provides an example of how anthropogenic climate change may directly influence one of the most prominent patterns of natural climate variability, ENSO, and potentially improve the skill of intraseasonal-to-interannual climate prediction.

Full access
Gerald A. Meehl
,
Warren M. Washington
,
Julie M. Arblaster
,
Aixue Hu
,
Haiyan Teng
,
Jennifer E. Kay
,
Andrew Gettelman
,
David M. Lawrence
,
Benjamin M. Sanderson
, and
Warren G. Strand

Abstract

Future climate change projections for phase 5 of the Coupled Model Intercomparison Project (CMIP5) are presented for the Community Earth System Model version 1 that includes the Community Atmospheric Model version 5 [CESM1(CAM5)]. These results are compared to the Community Climate System Model, version 4 (CCSM4) and include simulations using the representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100 to 2300. Equilibrium climate sensitivity of CESM1(CAM5) is 4.10°C, which is higher than the CCSM4 value of 3.20°C. The transient climate response is 2.33°C, compared to the CCSM4 value of 1.73°C. Thus, even though CESM1(CAM5) includes both the direct and indirect effects of aerosols (CCSM4 had only the direct effect), the overall climate system response including forcing and feedbacks is greater in CESM1(CAM5) compared to CCSM4. The Atlantic Ocean meridional overturning circulation (AMOC) in CESM1(CAM5) weakens considerably in the twenty-first century in all the RCP scenarios, and recovers more slowly in the lower forcing scenarios. The total aerosol optical depth (AOD) changes from ~0.12 in 2006 to ~0.10 in 2100, compared to a preindustrial 1850 value of 0.08, so there is less negative forcing (a net positive forcing) from that source during the twenty-first century. Consequently, the change from 2006 to 2100 in aerosol direct forcing in CESM1(CAM5) contributes to greater twenty-first century warming relative to CCSM4. There is greater Arctic warming and sea ice loss in CESM1(CAM5), with an ice-free summer Arctic occurring by about 2060 in RCP8.5 (2040s in September) as opposed to about 2100 in CCSM4 (2060s in September).

Full access
Kirsten Zickfeld
,
Michael Eby
,
Andrew J. Weaver
,
Kaitlin Alexander
,
Elisabeth Crespin
,
Neil R. Edwards
,
Alexey V. Eliseev
,
Georg Feulner
,
Thierry Fichefet
,
Chris E. Forest
,
Pierre Friedlingstein
,
Hugues Goosse
,
Philip B. Holden
,
Fortunat Joos
,
Michio Kawamiya
,
David Kicklighter
,
Hendrik Kienert
,
Katsumi Matsumoto
,
Igor I. Mokhov
,
Erwan Monier
,
Steffen M. Olsen
,
Jens O. P. Pedersen
,
Mahe Perrette
,
Gwenaëlle Philippon-Berthier
,
Andy Ridgwell
,
Adam Schlosser
,
Thomas Schneider Von Deimling
,
Gary Shaffer
,
Andrei Sokolov
,
Renato Spahni
,
Marco Steinacher
,
Kaoru Tachiiri
,
Kathy S. Tokos
,
Masakazu Yoshimori
,
Ning Zeng
, and
Fang Zhao

Abstract

This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.

Full access
Richard B. Neale
,
Jadwiga Richter
,
Sungsu Park
,
Peter H. Lauritzen
,
Stephen J. Vavrus
,
Philip J. Rasch
, and
Minghua Zhang

Abstract

The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.

Full access
Gretchen Keppel-Aleks
,
James T. Randerson
,
Keith Lindsay
,
Britton B. Stephens
,
J. Keith Moore
,
Scott C. Doney
,
Peter E. Thornton
,
Natalie M. Mahowald
,
Forrest M. Hoffman
,
Colm Sweeney
,
Pieter P. Tans
,
Paul O. Wennberg
, and
Steven C. Wofsy

Abstract

Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-dimensional structure of atmospheric CO2 for several representative concentration pathways (RCPs 4.5 and 8.5) using the Community Earth System Model–Biogeochemistry (CESM1-BGC). CO2 simulated for the historical period was first compared to surface, aircraft, and column observations. In a second step, the evolution of spatial and temporal gradients during the twenty-first century was examined. The mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net flux in the Community Land Model (the land component of CESM) was too weak. Consistent with weak summer drawdown in Northern Hemisphere high latitudes, simulated CO2 showed correspondingly weak north–south and vertical gradients during the summer. In the simulations of the twenty-first century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Not only did the mean north–south gradient increase due to fossil fuel emissions, but east–west contrasts in CO2 also strengthened because of changing patterns in fossil fuel emissions and terrestrial carbon exchange. In the RCP8.5 simulation, where CO2 increased to 1150 ppm by 2100, the CESM predicted increases in interannual variability in the Northern Hemisphere midlatitudes of up to 60% relative to present variability for time series filtered with a 2–10-yr bandpass. Such an increase in variability may impact detection of changing surface fluxes from atmospheric observations.

Full access
A. Gettelman
,
J. E. Kay
, and
J. T. Fasullo

Abstract

An ensemble of simulations from different versions of the Community Atmosphere Model in the Community Earth System Model (CESM) is used to investigate the processes responsible for the intermodel spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate sensitivity spread within the CESM ensemble.

Full access
Esther C. Brady
,
Bette L. Otto-Bliesner
,
Jennifer E. Kay
, and
Nan Rosenbloom

Abstract

Results are presented from the Community Climate System Model, version 4 (CCSM4), simulation of the Last Glacial Maximum (LGM) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) at the standard 1° resolution, the same resolution as the majority of the CCSM4 CMIP5 long-term simulations for the historical and future projection scenarios. The forcings and boundary conditions for this simulation follow the protocols of the Paleoclimate Modeling Intercomparison Project, version 3 (PMIP3). Two additional CCSM4 CO2 sensitivity simulations, in which the concentrations are abruptly changed at the start of the simulation to the low 185 ppm LGM concentrations (LGMCO2) and to a quadrupling of the preindustrial concentration (4×CO2), are also analyzed. For the full LGM simulation, the estimated equilibrium cooling of the global mean annual surface temperature is 5.5°C with an estimated radiative forcing of −6.2 W m−2. The radiative forcing includes the effects of the reduced LGM greenhouse gases, ice sheets, continental distribution with sea level lowered by approximately 120 m from the present, and orbital parameters, but not changes to atmospheric aerosols or vegetation biogeography. The LGM simulation has an equilibrium climate sensitivity (ECS) of 3.1(±0.3)°C, comparable to the CCSM4 4×CO2 result. The LGMCO2 simulation shows a greater ECS of 4.2°C. Other responses found at the LGM in CCSM4 include a global precipitation rate decrease at a rate of ~2% °C−1, similar to climate change simulations in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4); a strengthening of the Atlantic meridional overturning circulation (AMOC) with a shoaling of North Atlantic Deep Water and a filling of the deep basin up to sill depth with Antarctic Bottom Water; and an enhanced seasonal cycle accompanied by reduced ENSO variability in the eastern Pacific Ocean’s SSTs.

Full access