Browse

You are looking at 1 - 10 of 22 items for :

  • Journal of Hydrometeorology x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: All Content x
Clear All
Ali Tokay
,
Charles N. Helms
,
Kwonil Kim
,
Patrick N. Gatlin
, and
David B. Wolff

Abstract

Improving estimation of snow water equivalent rate (SWER) from radar reflectivity (Ze), known as a SWER(Ze) relationship, is a priority for NASA’s Global Precipitation Measurement (GPM) mission ground validation program as it is needed to comprehensively validate spaceborne precipitation retrievals. This study investigates the performance of eight operational and four research-based SWER(Ze) relationships utilizing Precipitation Imaging Probe (PIP) observations from the International Collaborative Experiment for Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018) field campaign. During ICE-POP 2018, there were 10 snow events that are classified by synoptic conditions as either cold low or warm low, and a SWER(Ze) relationship is derived for each event. Additionally, a SWER(Ze) relationship is derived for each synoptic classification by merging all events within each class. Two new types of SWER(Ze) relationships are derived from PIP measurements of bulk density and habit classification. These two physically based SWER(Ze) relationships provided superior estimates of SWER when compared to the operational, event-specific, and synoptic SWER(Ze) relationships. For estimates of the event snow water equivalent total, the event-specific, synoptic, and best-performing operational SWER(Ze) relationships outperformed the physically based SWER(Ze) relationship, although the physically based relationships still performed well. This study recommends using the density or habit-based SWER(Ze) relationships for microphysical studies, whereas the other SWER(Ze) relationships are better suited toward hydrologic application.

Restricted access
Jackson Tan
,
Nayeong Cho
,
Lazaros Oreopoulos
, and
Pierre Kirstetter

Abstract

Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.

Significance Statement

To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.

Full access
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Full access
Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.

Open access
Pin-Lun Li
,
Liao-Fan Lin
, and
Chia-Jeng Chen

ABSTRACT

Satellite and model precipitation such as the Global Precipitation Measurement (GPM) data are valuable in hydrometeorological applications. This study investigates the performance of various satellite and model precipitation products in Taiwan from 2015 to 2017, including data derived from the Integrated Multisatellite Retrievals for GPM Early and Final Runs (IMERG_E and IMERG_F), Global Satellite Mapping of Precipitation in near–real time (GSMaP_NRT), and the Weather Research and Forecasting (WRF) Model. We assess these products by comparing them against data collected from 304 surface stations and gauge-based gridded data. Our assessment emphasizes factors influential in precipitation estimation, such as season, temperature, elevation, and extreme event. Further, we assess the hydrological response to each precipitation product via continuous flow simulation in two selected watersheds. The results indicate that the performance of these precipitation products is subject to seasonal and regional variations. The satellite products (i.e., IMERG and GSMaP) perform better than the model (i.e., WRF) in the warm season and vice versa in the cold season, most apparently in northern Taiwan. For selected extreme events, WRF can simulate better rainfall amount and distribution. The seasonal and regional variations in precipitation estimation are also reflected in flow simulations: IMERG in general produces the most rational flow simulation, GSMaP tends to overestimate and be least useful for hydrological applications, while WRF simulates high flows that show accurate time to the peak flows and are better in the southern watershed.

Full access
Manikandan Rajagopal
,
Edward Zipser
,
George Huffman
,
James Russell
, and
Jackson Tan

Abstract

The Integrated Multisatellite Retrievals for Global Precipitation Measurement Mission (IMERG) is a global precipitation product that uses precipitation retrievals from the virtual constellation of satellites with passive microwave (PMW) sensors, as available. In the absence of PMW observations, IMERG uses a Kalman filter scheme to morph precipitation from one PMW observation to the next. In this study, an analysis of convective systems observed during the Convective Process Experiment (CPEX) suggests that IMERG precipitation depends more strongly on the availability of PMW observations than previously suspected. Following this evidence, we explore systematic biases in IMERG through bulk statistics. In two CPEX case studies, cloud photographs, pilot’s radar, and infrared imagery suggest that IMERG represents the spatial extent of precipitation relatively well when there is a PMW observation but sometimes produces spurious precipitation areas in the absence of PMW observations. Also, considering an observed convective system as a precipitation object in IMERG, the maximum rain rate peaked during PMW overpasses, with lower values between them. Bulk statistics reveal that these biases occur throughout IMERG Version 06. We find that locations and times without PMW observations have a higher frequency of light precipitation rates and a lower frequency of heavy precipitation rates due to retrieval artifacts. These results reveal deficiencies in the IMERG Kalman filter scheme, which have led to the development of the Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood (SHARPEN; described in a companion paper) that will be applied in the next version of IMERG.

Full access
Jackson Tan
,
George J. Huffman
,
David T. Bolvin
,
Eric J. Nelkin
, and
Manikandan Rajagopal

Abstract

A key strategy in obtaining complete global coverage of high-resolution precipitation is to combine observations from multiple fields, such as the intermittent passive microwave observations, precipitation propagated in time using motion vectors, and geosynchronous infrared observations. These separate precipitation fields can be combined through weighted averaging, which produces estimates that are generally superior to the individual parent fields. However, the process of averaging changes the distribution of the precipitation values, leading to an increase in precipitating area and a decrease in the values of high precipitation rates, a phenomenon observed in IMERG. To mitigate this issue, we introduce a new scheme called SHARPEN (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood), which recovers the distribution of the averaged precipitation field based on the idea of quantile mapping applied to the local environment. When implemented in IMERG, precipitation estimates from SHARPEN exhibit a distribution that resembles that of the original instantaneous observations, with matching precipitating area and peak precipitation rates. Case studies demonstrate its improved ability in bridging between the parent precipitation fields. Evaluation against ground observations reveals a distinct improvement in precipitation detection skill, but also a slightly reduced correlation likely because of a sharper precipitation field. The increased computational demand of SHARPEN can be mitigated by striding over multiple grid boxes, which has only marginal impacts on the accuracy of the estimates. SHARPEN can be applied to any precipitation algorithm that produces an average from multiple input precipitation fields and is being considered for implementation in IMERG V07.

Full access
Linda Bogerd
,
Aart Overeem
,
Hidde Leijnse
, and
Remko Uijlenhoet

Abstract

Applications like drought monitoring and forecasting can profit from the global and near-real-time availability of satellite-based precipitation estimates once their related uncertainties and challenges are identified and treated. To this end, this study evaluates the IMERG V06B Late Run precipitation product from the Global Precipitation Measurement mission (GPM), a multisatellite product that combines space-based radar, passive microwave (PMW), and infrared (IR) data into gridded precipitation estimates. The evaluation is performed on the spatiotemporal resolution of IMERG (0.1° × 0.1°, 30 min) over the Netherlands over a 5-yr period. A gauge-adjusted radar precipitation product from the Royal Netherlands Meteorological Institute (KNMI) is used as reference, against which IMERG shows a large positive bias. To find the origin of this systematic overestimation, the data are divided into seasons, rainfall intensity ranges, echo top height (ETH) ranges, and categories based on the relative contributions of IR, morphing, and PMW data to the IMERG estimates. Furthermore, the specific radiometer is identified for each PMW-based estimate. IMERG’s detection performance improves with higher ETH and rainfall intensity, but the associated error and relative bias increase as well. Severe overestimation occurs during low-intensity rainfall events and is especially linked to PMW observations. All individual PMW instruments show the same pattern: overestimation of low-intensity events and underestimation of high-intensity events. IMERG misses a large fraction of shallow rainfall events, which is amplified when IR data are included. Space-based retrieval of shallow and low-intensity precipitation events should improve before IMERG can become accurate over the middle and high latitudes.

Free access
Andrea Camplani
,
Daniele Casella
,
Paolo Sanò
, and
Giulia Panegrossi

Abstract

This paper describes a new Passive Microwave Empirical Cold Surface Classification Algorithm (PESCA) developed for snow-cover detection and characterization by using passive microwave satellite measurements. The main goal of PESCA is to support the retrieval of falling snow, since several studies have highlighted the influence of snow-cover radiative properties on the falling-snow passive microwave signature. The developed method is based on the exploitation of the lower-frequency channels (<90 GHz), common to most microwave radiometers. The method applied to the conically scanning Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the cross-track-scanning Advanced Technology Microwave Sounder (ATMS) is described in this paper. PESCA is based on a decision tree developed using an empirical method and verified using the AutoSnow product built from satellite measurements. The algorithm performance appears to be robust both for sensors in dry conditions (total precipitable water < 10 mm) and for mean surface elevation < 2500 m, independent of the cloud cover. The algorithm shows very good performance for cold temperatures (2-m temperature below 270 K) with a rapid decrease of the detection capabilities between 270 and 280 K, where 280 K is assumed as the maximum temperature limit for PESCA (overall detection statistics: probability of detection is 0.98 for ATMS and 0.92 for GMI, false alarm ratio is 0.01 for ATMS and 0.08 for GMI, and Heidke skill score is 0.72 for ATMS and 0.69 for GMI). Some inconsistencies found between the snow categories identified with the two radiometers are related to their different viewing geometries, spatial resolution, and temporal sampling. The spectral signatures of the different snow classes also appear to be different at high frequency (>90 GHz), indicating potential impact for snowfall retrieval. This method can be applied to other conically scanning and cross-track-scanning radiometers, including the future operational EUMETSAT Polar System Second Generation (EPS-SG) mission microwave radiometers.

Open access
Kamil Mroz
,
Mario Montopoli
,
Alessandro Battaglia
,
Giulia Panegrossi
,
Pierre Kirstetter
, and
Luca Baldini

Abstract

Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes the Dual-Frequency Precipitation Radar (DPR) retrieval and its single-frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE), and two passive microwave retrievals, i.e., the Goddard Profiling algorithm (GPROF) and the Snow Retrieval Algorithm for GMI (SLALOM). The 2C-SNOW retrieval has the highest Heidke skill score (HSS) for detecting snowfall among the products analyzed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of 2 compared to MRMS. Large discrepancies (RMSE of 0.7–1.5 mm h−1) between spaceborne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.

Open access