Browse

You are looking at 1 - 10 of 24 items for :

  • Years of the Maritime Continent x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Sang-Ki Lee, Hosmay Lopez, Gregory R. Foltz, Eun-Pa Lim, Dongmin Kim, Sarah M. Larson, Kandaga Pujiana, Denis L. Volkov, Soumi Chakravorty, and Fabian A. Gomez

Abstract

A phenomenon referred to here as Java–Sumatra Niño/Niña (JSN or JS Niño/Niña) is characterized by the appearance of warm/cold sea surface temperature anomalies (SSTAs) in the coastal upwelling region off Java–Sumatra in the southeastern equatorial Indian Ocean. JSN develops in July–September and sometimes as a precursor to the Indian Ocean dipole, but often without corresponding SSTAs in the western equatorial Indian Ocean. Although its spatiotemporal evolution varies considerably between individual events, JSN is essentially an intrinsic mode of variability driven by local atmosphere–ocean positive feedback, and thus does not rely on remote forcing from the Pacific for its emergence. JSN is an important driver of climate variability over the tropical Indian Ocean and the surrounding continents. Notably, JS Niña events developing in July–September project onto the South and Southeast Asian summer monsoons, increasing the probability of heavy rainfall and flooding across the most heavily populated regions of the world.

Restricted access
Shuguang Wang and Adam H. Sobel

Abstract

The Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO) are fundamental modes of variability in the tropical atmosphere on the intraseasonal time scale. A linear model, using a moist shallow water equation set on an equatorial beta plane, is developed to provide a unified treatment of the two modes and to understand their growth and propagation over the Indian Ocean. Moisture is assumed to increase linearly with longitude and to decrease quadratically with latitude. Solutions are obtained through linear stability analysis, considering the gravest (n = 1) meridional mode with nonzero meridional velocity. Anomalies in zonal moisture advection and surface fluxes are both proportional to those in zonal wind, but of opposite sign. With observation-based estimates for both effects, the zonal advection dominates, and drives the planetary-scale instability. With a sufficiently small meridional moisture gradient, the horizontal structure exhibits oscillations with latitude and a northwest–southeast horizontal tilt in the Northern Hemisphere, qualitatively resembling the observed BSISO. As the meridional moisture gradient increases, the horizontal tilt decreases and the spatial pattern transforms toward the “swallowtail” structure associated with the MJO, with cyclonic gyres in both hemispheres straddling the equatorial precipitation maximum. These results suggest that the magnitude of the meridional moisture gradient shapes the horizontal structures, leading to the transformation from the BSISO-like tilted horizontal structure to the MJO-like neutral wave structure as the meridional moisture gradient changes with the seasons. The existence and behavior of these intraseasonal modes can be understood as a consequence of phase speed matching between the equatorial mode with zero meridional velocity (analogous to the dry Kelvin wave) and a local off-equatorial component that is characterized by considering an otherwise similar system on an f plane.

Restricted access
Yun-Lan Chen, Chung-Hsiung Sui, Chih-Pei Chang, and Kai-Chih Tseng

Abstract

This paper studies the influences of the Madden–Julian oscillation (MJO) on East Asian (EA) winter rainfall using the singular value decomposition (SVD) approach. This method uses two-dimensional instead of latitudinally averaged variables in the commonly used real-time multivariate MJO (RMM) index. A comparison of the two approaches is made using the same OLR and zonal wind data over 37 boreal winter seasons of December–March. The SVD composite reveals a more conspicuous and coherent variation throughout the MJO cycle, while the RMM composite is more ambiguous. In particular, the SVD analysis identifies the convection anomalies over the Maritime Continent and the subtropical western Pacific (MCWP) as a major cause of enhanced rainfall in EA at RMM phases 8 and 1. This is at least one-eighth of a cycle earlier than the phases of convection development over the Indian Ocean (IO) that were emphasized by previous studies. A linearized global baroclinic model is used to demonstrate the mechanism of MJO forcing on EA rainfall during various phases, with a focus on the MCWP cooling. The result shows that the anomalous MCWP cooling and the resultant low-level anticyclonic flow interact with the East Asian jet, leading to an overall weakened EA winter monsoon circulation. The associated anomalous overturning circulation, with ascending motion and low-level horizontal moisture convergence in EA, contributes to the enhanced rainfall. This model result supports the interpretation of the SVD analysis, in that the MCWP cooling induced anomalous meridional circulation is a more direct cause of enhanced EA rainfall than the IO heating (or the IO–MCWP heating dipole) induced Rossby wave teleconnection.

Restricted access
Daehyun Kang, Daehyun Kim, Min-Seop Ahn, and Soon-Il An

Abstract

This study investigates the role of the background meridional moisture gradient (MMG) on the propagation of the Madden–Julian oscillation (MJO) across the Maritime Continent (MC) region. It is found that the interannual variability of the seasonal mean MMG over the southern MC area is associated with the meridional expansion and contraction of the moist area in the vicinity of the MC. Sea surface temperature anomalies associated with relatively high and low seasonal mean MMG exhibit patterns that resemble those of El Niño–Southern Oscillation. By contrasting the years with anomalously low and high MMG, we show that MJO propagation through the MC is enhanced (suppressed) in years with higher (lower) seasonal mean MMG, although the effect is less robust when MMG anomalies are weak. Column-integrated moisture budget analysis further shows that sufficiently large MMG anomalies affect MJO activity by modulating the meridional advection of the mean moisture via MJO wind anomalies. Our results suggest that the background moisture distribution has a strong control over the propagation characteristics of the MJO in the MC region.

Restricted access
Lei Zhou, Ruomei Ruan, and Raghu Murtugudde

Abstract

Madden–Julian oscillations (MJOs) are a major component of tropical intraseasonal variabilities. There are two paths for MJOs across the Maritime Continent; one is a detoured route into the Southern Hemisphere and the other one is around the equator across the Maritime Continent. Here, it is shown that the detoured and nondetoured MJOs have significantly different impacts on the South Pacific convergence zone (SPCZ). The detoured MJOs trigger strong cross-equatorial meridional winds from the Northern Hemisphere into the Southern Hemisphere. The associated meridional moisture and energy transports due to the background states carried by the intraseasonal meridional winds are favorable for reinforcing the SPCZ. In contrast, the influences of nondetoured MJOs on either hemisphere or the meridional transports across the equator are much weaker. The detoured MJOs can extend their impacts to the surrounding regions by shedding Rossby waves. Due to different background vorticity during detoured MJOs in boreal winter, more ray paths of Rossby waves traverse the Maritime Continent connecting the southern Pacific Ocean and the eastern Indian Ocean, but far fewer Rossby wave paths traverse Australia. Further studies on such processes are expected to contribute to a better understanding of extreme climate and natural disasters on the rim of the southern Pacific and Indian Oceans.

Restricted access
Marvin Xiang Ce Seow, Yushi Morioka, and Tomoki Tozuka

Abstract

Influences from the tropical Pacific and Indian Oceans and atmospheric internal variability on the South China Sea (SCS) atmospheric circulation and cold tongue (CT) variabilities in boreal winter and the relative roles of remote forcings at interannual time scales are studied using observational data, reanalysis products, and coupled model experiments. In the observation, strong CT years are accompanied by local cyclonic wind anomalies, which are an equatorial Rossby wave response to enhanced convection over the warmer-than-normal western equatorial Pacific associated with La Niña. Also, the cyclonic wind anomalies are an atmospheric Kelvin wave response to diabatic cooling anomalies linked to both the decaying late fall negative Indian Ocean dipole (IOD) and winter atmospheric internal variability. Partially coupled experiments reveal that both the tropical Pacific air–sea coupling and atmospheric internal variability positively contribute to the coupled variability of the SCS CT, while the air–sea coupling over the tropical Indian Ocean weakens such variabilities. The northwest Pacific anticyclonic wind anomalies that usually precede El Niño–Southern Oscillation–independent negative IOD generated under the tropical Indian Ocean air–sea coupling undermine such variabilities.

Full access
Jieshun Zhu, Arun Kumar, and Wanqiu Wang

Abstract

This study revisits MJO predictability based on the “perfect model” approach with a contemporary model. Experiments are performed to address the reasons for substantial uncertainties in current estimates of MJO predictability, with a focus on the influence of atmospheric convection parameterization. Specifically, two atmospheric convection schemes are applied for experiments with the NOAA Climate Forecast System, version 2 (CFSv2). MJO potential predictability and prediction skill are assessed, with MJO indices taken as the first two principal components of the combined fields of near-equatorially averaged 200-hPa zonal wind, 850-hPa zonal wind, and outgoing longwave radiation at the top of the atmosphere. Analyses indicate that the convection scheme alone can have substantial influence on the estimate of MJO predictability, with estimates differing by as much as 15 days. Further diagnostics suggest that the shorter predictability with one convection scheme is mainly caused by too weak of an MJO signal. The choice of atmospheric convection scheme also exerts effects on the phase dependency of MJO predictability, and the “Maritime Continent prediction barrier” is identified to be more evident with one convection scheme than with the other.

Free access
D. Argüeso, R. Romero, and V. Homar

Abstract

The Maritime Continent is the largest archipelago in the world and a region of intense convective activity that influences Earth’s general circulation. The region features one of the warmest oceans, very complex topography, dense vegetation, and an intricate configuration of islands, which together result in very specific precipitation characteristics, such as a marked diurnal cycle. Atmospheric models poorly resolve deep convection processes that generate rainfall in the archipelago and show fundamental errors in simulating precipitation. Spatial resolution and the use of convective schemes required to represent subgrid convective circulations have been pointed out as culprits of these errors. However, models running at the kilometer scale explicitly resolve most convective systems and thus are expected to contribute to solve the challenge of accurately simulating rainfall in the Maritime Continent. Here we investigate the differences in simulated precipitation characteristics for different representations of convection, including parameterized and explicit, and at various spatial resolutions. We also explore the vertical structure of the atmosphere in search of physical mechanisms that explain the main differences identified in the rainfall fields across model experiments. Our results indicate that both increased resolution and representing convection explicitly are required to produce a more realistic simulation of precipitation features, such as a correct diurnal cycle both over land and ocean. We found that the structures of deep and shallow clouds are the main differences across experiments and thus they are responsible for differences in the timing and spatial distribution of rainfall patterns in the various convection representation experiments.

Open access
Kevin E. Trenberth and Yongxin Zhang

Abstract

The net surface energy flux is computed as a residual of the energy budget using top-of-atmosphere radiation combined with the divergence of the column-integrated atmospheric energy transports, and then used with the vertically integrated ocean heat content tendencies to compute the ocean meridional heat transports (MHTs). The mean annual cycles and 12-month running mean MHTs as a function of latitude are presented for 2000–16. Effects of the Indonesian Throughflow (ITF), associated with a net volume flow around Australia accompanied by a heat transport, are fully included. Because the ITF-related flow necessitates a return current northward in the Tasman Sea that relaxes during El Niño, the reduced ITF during El Niño may contribute to warming in the south Tasman Sea by allowing the East Australian Current to push farther south even as it gains volume from the tropical waters not flowing through the ITF. Although evident in 2015/16, when a major marine heat wave occurred, these effects can be overwhelmed by changes in the atmospheric circulation. Large interannual MHT variability in the Pacific is 4 times that of the Atlantic. Strong relationships reveal influences from the southern subtropics on ENSO for this period. At the equator, northward ocean MHT arises mainly in the Atlantic (0.75 PW), offset by the Pacific (−0.33 PW) and Indian Oceans (−0.20 PW) while the atmosphere transports energy southward (−0.35 PW). The net equatorial MHT southward (−0.18 PW) is enhanced by −0.1 PW that contributes to the greater warming of the southern (vs northern) oceans.

Open access
Wei-Ting Chen, Shih-Pei Hsu, Yuan-Huai Tsai, and Chung-Hsiung Sui

ABSTRACT

We studied the scale interactions of the convectively coupled Kelvin waves (KWs) over the South China Sea (SCS) and Maritime Continent (MC) during December 2016. Three KWs were observed near the equator in this month while the Madden–Julian oscillation (MJO) was inactive. The impacts of these KWs on the rainfall variability of various time scales are diagnosed, including synoptic disturbances, diurnal cycle (DC), and the onset of the Australian monsoon. Four interaction events between the KWs and the westward-propagating waves over the off-equatorial regions were examined; two events led to KW enhancements and the other two contributed to the formation of a tropical depression/tropical cyclone. Over the KW convectively active region of the MC, the DC of precipitation was enhanced in major islands and neighboring oceans. Over the land, the DC hot spots were modulated depending on the background winds and the terrain effects. Over the ocean, the “coastal regime” of the DC appeared at specific coastal areas. Last, the Australian summer monsoon onset occurred with the passage of a KW, which provided favorable conditions of low-level westerlies and initial convection over southern MC and the Arafura Sea. This effect may be helped by the warm sea surface temperature anomalies associated with the La Niña condition of this month. The current results showcase that KWs and their associated scale interactions can provide useful references for weather monitoring and forecast of this region when the MJO is absent.

Full access