Browse

You are looking at 1 - 1 of 1 items for :

  • Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics x
  • Years of the Maritime Continent x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Benjamin A. Toms, Susan C. van den Heever, Emily M. Riley Dellaripa, Stephen M. Saleeby, and Eric D. Maloney

Abstract

While the boreal summer Madden–Julian oscillation (MJO) is commonly defined as a planetary-scale disturbance, the convective elements that constitute its cloud dipole exhibit pronounced variability in their morphology. We therefore investigate the relationship between the intraseasonal cloud anomaly of the MJO and the convective elements that populate its interior by simulating a boreal summer MJO event over the Maritime Continent using a cloud-resolving model. A progressive relationship between convective cell morphology and the MJO within the convectively enhanced region of the MJO was identified and characterized as follows: anomalously long-lasting cells in the initial phases, followed by an increased number of cells in the intermediate phases, progressing into more expansive cells in the terminal phases. A progressive relationship does not seem to exist within the convectively suppressed region of the MJO within the simulated domain, however. Within the convectively enhanced region of the MJO, the progressive relationship is partially explained by the evolution of bulk atmospheric characteristics, such as instability and wind shear. Positive midlevel moisture anomalies coincide with anomalously long-lasting convective cells, which is hypothesized to further cascade into an increase in convective cell volume, although variability in the number of convective cells seems to be related to an unidentified variable. This intraseasonal relationship between convective cell morphology and the boreal summer MJO within the Maritime Continent may have broader implications for the large-scale structure and evolution of the MJO, related to both convective moistening and cloud-radiative feedbacks.

Free access