Browse

You are looking at 1 - 10 of 9,660 items for :

  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All
Roger Edwards, Harold E. Brooks, and Hannah Cohn

Abstract

United States tornado records form the basis for a variety of meteorological, climatological and disaster-risk analyses, but how reliable are they in light of changing standards for rating, as with the 2007 transition of Fujita (F) to Enhanced Fujita (EF) damage scales? To what extent are recorded tornado metrics subject to such influences that may be nonmeteorological in nature? While addressing these questions with utmost thoroughness is too large of a task for any one study, and may not be possible given the many variables and uncertainties involved, some variables that are recorded in large samples are ripe for new examination. We assess basic tornado-path characteristics—damage rating, length, width, and occurrence time, as well as some combined and derived measures—for a 24-yr period of constant path-width recording standard that also coincides with National Weather Service modernization and the WSR-88D deployment era. The middle of that period (in both time and approximate tornado counts) crosses the official switch from F to EF. At least minor shifts in all assessed path variables are associated directly with that change, contrary to the intent of EF implementation. Major and essentially stepwise expansion of tornadic path widths occurred immediately upon EF usage, and widths have expanded still further within the EF era. We also document lesser increases in path lengths, and in tornadoes rated at least EF1 compared to EF0. These apparently secular changes in the tornado data can impact research dependent on bulk tornado-path characteristics and damage-assessment results.

Restricted access
Jing Chen, Ji Wang, Runsheng Lin, and Li Lu

Abstract

The outdoor events of the 2022 Winter Olympics and Paralympics will be held in the mountain areas of Beijing–Zhangjiakou, North China, where there is a complete reliance on artificial snow production owing to the dry and cold weather conditions. To assess how favorable the meteorological conditions are to snowmaking at the mountain venues, we reconstructed the daily wet-bulb temperature by adopting the thin-plate smoothing spline function method, and then we assessed the potential number of snowmaking days at eight weather stations (928–2098 m MSL) from October to the next April (i.e., the ski season) during the period 1978–2017. Results showed that artificial snow production would have been possible on 121 (±14) to 171 (±12) days on average at the stations with the increases of altitude, and the number of days decreased at rates of 4.3–5.1 days decade−1 across four decades of the study period. The cause of the decrease was the warming trend, which affected the number of days in low-altitude sites simultaneously, but the reduction was delayed with increased elevation. At monthly scale, the number of snowmaking days was robust in wintertime but reduced in other months of the ski season, particularly in March in more recent subperiods at high-altitude stations, which was determined by the increase in high values of daily mean wet-bulb temperature. Further improvements in assessing snowmaking conditions require detailed microclimatic studies to reduce the uncertainties caused by meteorological conditions as well as combination with model-based methods to determine potential future changes.

Restricted access
Zunya Wang, Yanju Liu, Guofu Wang, and Qiang Zhang

Abstract

It is argued that the occurrence of cold events decreases under the background of global warming. However, from the mid-1990s to the early 2010s, northern China experienced a period of increasing occurrence of low temperature extremes (LTE). Factors responsible for this increase of LTE are investigated in this analysis. The results show that the interdecadal variation of the winter mean temperature over mid- and high-latitude Eurasia acts as an important thermal background. It is characterized by two dominant modes, the “consistent cooling” pattern and the “warm high-latitude Eurasia and cold midlatitude Eurasia” pattern, from the mid-1990s to the early 2010s. The two patterns jointly provide a cooling background for the increase of LTE in northern China. Meanwhile, though the interdecadal variation of the Arctic Oscillation (AO), Ural blocking (UB), and Siberian high (SH) are all highly correlated with the occurrence of LTE in northern China, the AO is found to play a dominant role. On one hand, the AO directly affects the occurrence of LTE because of its dynamic structure; on the other hand, it takes an indirect effect by affecting the intensity of UB and SH. Further analyses show that the winter temperature in mid- and high-latitude Eurasia and the AO are independent factors that influence the increase of LTE in northern China from the mid-1990s to the early 2010s.

Restricted access
Mengke Zhang, Jian Li, and Nina Li

Abstract

Fine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north–south orientation in Southwest China, are studied using station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, whereas long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.

Restricted access
Timothy Marchok

Abstract

Multiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center fixing most variables and a separate scheme used for center fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015–17 hurricane seasons in the Atlantic and eastern Pacific basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecasting Model (HWRF). A configuration that tracks only 850-mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of 11 parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the 11 parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850-mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.

Restricted access
Warwick Grace and Graeme Tepper

Abstract

Pesticide applications during surface inversions can lead to spray drift causing severe damage up to several kilometers off-target. Current regulations in Australia prohibit spray application of certain agricultural chemicals when hazardous surface inversions exist. This severely limits spray opportunities. Surface inversions can be classified as weakly or strongly stable. In the weakly stable case, moderate to strong turbulent mixing is not supportive of long-distance concentrated drift. In the very stable case, weak turbulent mixing can support the transport of high concentrations of fine material over long distances. A review of the literature and our analyses indicate that if the turbulence, as measured by the standard deviation of the vertical wind speed σ w, is greater than about 0.2 m s−1 then turbulence-driven mixing and dispersion is moderate to strong and conversely if σ w is less than about 0.2 m s−1 then turbulence-driven mixing and dispersion is weaker (an order of magnitude). The concept of maximum downward heat flux as a natural division between the regimes is applied within Monin–Obukhov stability theory, and it is shown that the observed mean σ w of 0.2 m s−1 aligns with the ridge line of maximum heat flux in stable conditions. The level of turbulence in the weakly stable regime is comparable to the turbulence typically observed in near-neutral conditions that are recommended under current guidelines as suitable for spraying and is therefore seen as an acceptable prerequisite to avoid nondispersive spraying conditions.

Restricted access
Thomas O. Mazzetti, Bart Geerts, Lulin Xue, Sarah Tessendorf, Courtney Weeks, and Yonggang Wang

Abstract

Glaciogenic cloud seeding has long been practiced as a way to increase water availability in arid regions, such as the interior western United States. Many seeding programs in this region target cold-season orographic clouds with ground-based silver iodide generators. Here, the “seedability” (defined as the fraction of time that conditions are suitable for ground-based seeding) is evaluated in this region from 10 years of hourly output from a regional climate model with a horizontal resolution of 4 km. Seedability criteria are based on temperature, presence of supercooled liquid water, and Froude number, which is computed here as a continuous field relative to the local terrain. The model’s supercooled liquid water compares reasonably well to microwave radiometer observations. Seedability peaks at 20%–30% for many mountain ranges in the cold season, with the best locations just upwind of crests, over the highest terrain in Colorado and Wyoming, as well as over ranges in the northwest interior. Mountains farther south are less frequently seedable, because of warmer conditions, but when they are, cloud supercooled liquid water content tends to be relatively high. This analysis is extended into a future climate, anticipated for later this century, with a mean temperature 2.0 K warmer than the historical climate. Seedability generally will be lower in this future warmer climate, especially in the most seedable areas, but, when seedable, clouds tend to contain slightly more supercooled liquid water.

Restricted access
Dehe Xu, Qi Zhang, Yan Ding, and De Zhang

Abstract

Drought is a common natural disaster that greatly affects the crop yield and water supply in China. However, the spatiotemporal characteristics of drought in China are not well understood. This paper explores the spatial and temporal distributions of droughts in China over the past 40 years using multiscale standardized precipitation evapotranspiration index (SPEI) values calculated by monthly precipitation and temperature data from 612 meteorological stations in China from 1980 to 2019 and combines the space–time cube (STC), Mann–Kendall test, emerging spatiotemporal hot-spot analysis, spatiotemporal clustering, and local outliers for the analysis. The results were as follows: 1) the drought frequency and STC show that there is a significant difference in the spatiotemporal distribution of drought in China, with the most severe drought in Northwest China, followed by the western part of Southwest China and the northern part of North China. 2) The emerging spatiotemporal hot-spot analysis of SPEI6 over the past 40 years reveals two cold spots in subregion 4, indicating that future droughts in the region will be more severe. 3) A local outlier analysis of the multiscale SPEI yields a low–low outlier in western North China, indicating relatively more severe year-round drought in this area than in other areas. The low–high outlier in central China indicates that this region was not dry in the past and that drought will become more severe in this region in the future.

Restricted access
Huanyan Gao, Yali Luo, Xiaoling Jiang, Da-Lin Zhang, Yang Chen, Yongqing Wang, and Xinyong Shen

Abstract

In this study, the total days, mean duration, and intensity of extreme hot events over southern China during the 1971–2020 warm seasons are analyzed on the basis of daily maximum and minimum temperatures, by comparing the newly proposed independent hot day (IHD), independent warm night (IWN), and compound extreme (CMPD; i.e., the continuous occurrences of hot days and hot nights) with the traditionally defined hot day and warm night. Relationships between the hot extremes and urbanization are explored with 1-km-resolution population density data. Results show obvious differences in the spatial distributions among IHD, IWN, and CMPD over southern China. Positive correlations of 0.43, 0.41, and 0.37 are found between the population density and the total days, mean duration, and mean intensity of CMPD, respectively, which are qualitatively similar to those using the traditional hot days and warm nights. In contrast, negative correlations between the IHD and IWN indices and the population density are found, because those indices are more apparent over rural areas. Moreover, total days, mean duration, and mean intensity of CMPD increase significantly, with trends of approximately 103%, 21%, and 38% decade−1, respectively, during the rapid urbanization period from the mid-1990s to 2020, which are about 4.9, 2.1, and 2.4 times their counterparts from 1970 to the mid-1990s, and less significant and smaller differences between the two eras are found in IHD and IWN. These results will provide a new scientific basis for evaluating climate models of hot extremes in southern China and have important implications for the other urbanized regions as well.

Restricted access
Robert Fritzen, Victoria Lang, and Vittorio A. Gensini

Abstract

Extratropical cyclones are the primary driver of sensible weather conditions across the midlatitudes of North America, often generating various types of precipitation, gusty nonconvective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient resulting from anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified on the basis of their genesis location. In addition, bomb cyclones—extratropical cyclones that recorded a latitude-normalized pressure fall of 24 hPa in 24 h—were identified and stratified for additional analysis. Cyclone life span across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈270 cyclones were tracked across the analysis domain per year, with an average of ≈18 yr−1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 per year during 1979–99 to 250 per year during 2000–19. Decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah Mountain Range. No significant interannual or spatial trends were noted in the frequency of bomb cyclones.

Restricted access