Browse

You are looking at 1 - 10 of 14,973 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Scott W. Powell

Abstract

An idealized large-eddy simulation of a tropical marine cloud population was performed. At any time, it contained hundreds of clouds, and updraft width in shallow convection emerging from a subcloud layer appeared to be an important indicator of whether specific convective elements deepened. In an environment with 80%–90% relative humidity below the 0°C level, updrafts that penetrated the 0°C level were larger at and above cloud base, which occurred at the lifting condensation level near 600 m. Parcels rising in these updrafts appeared to emerge from boundary layer eddies that averaged ∼200 m wider than those in clouds that only reached 1.5–3 km height. The deeply ascending parcels (growers) possessed statistically similar values of effective buoyancy below the level of free convection (LFC) as parcels that began to ascend in a cloud but stopped before reaching 3000 m (nongrowers). The growers also experienced less dilution above the LFC. Nongrowers were characterized by negative effective buoyancy and rapid deceleration above the LFC, while growers continued to accelerate well above the LFC. Growers occurred in areas with a greater magnitude of background convergence (or weaker divergence) in the subcloud layer, especially between 300 m and cloud base, but whether the convergence actually led to eddy widening is unclear.

Significance Statement

Cumulonimbus clouds are responsible for many extreme weather phenomena and are important contributors to Earth’s energy balance. However, the processes leading to the growth of individual clouds are not completely understood nor well-represented in weather prediction models. We find that the clouds containing updrafts that start out wider at early stages of their life cycles grow taller, possibly because they are protected more from drier air outside the cloud than narrow clouds. In addition, this work shows how the initial width of clouds might be related to convergence in the lowest part of the atmosphere, at heights where clouds initially develop. However, meteorologists must be careful not to overinterpret these results because numerical simulations inherently include assumptions that may not reflect reality. This reinforces the need to also observe processes occurring at the scales of individual clouds.

Open access
Sarah A. Tessendorf
,
Kyoko Ikeda
,
Roy M. Rasmussen
,
Jeffrey French
,
Robert M. Rauber
,
Alexei Korolev
,
Lulin Xue
,
Derek R. Blestrud
,
Nicholas Dawson
,
Melinda Meadows
,
Melvin L. Kunkel
, and
Shaun Parkinson

Abstract

During the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE) field campaign, cloud-top generating cells were frequently observed in the very high-resolution W-band airborne cloud radar data. This study examines multiple flight segments from three SNOWIE cases that exhibited cloud-top generating cells structures, focusing on the in-situ measurements inside and outside these cells to characterize the microphysics of these cells. The observed generating cells in these three cases occurred in cloud tops of −15 to −30 °C, with and without overlying cloud layers, but always with shallow layers of atmospheric instability observed at cloud top. The results also indicate that liquid water content, vertical velocity, and drizzle and ice crystal concentrations are greater inside the generating cells compared to the adjacent portions of the cloud. The generating cells were predominantly < 500 m in horizontal width and frequently exhibited drizzle drops coexisting with ice. The particle imagery indicates that ice particle habits included plates, columns, and rimed and irregular crystals, likely formed via primary ice nucleation mechanisms. Understanding the sources of natural ice formation is important to understanding precipitation formation in winter orographic clouds, and is especially relevant for clouds that may be targeted for glaciogenic cloud seeding as well as to improve model representation of these clouds.

Restricted access
Hirohiko Masunaga
and
Hanii Takahashi

Abstract

Convective lifecycle is often conceptualized to progress from congestus to deep convection and develop further to stratiform anvil clouds, accompanied by a systematic change in the vertical structure of vertical motion. This archetype scenario has been developed largely from the Eulerian viewpoint, and has yet to be explored whether or not the same lifecycle emerges itself in a moving system tracked in the Lagrangian manner. To address this question, Lagrangian tracking is applied to tropical convective systems in combination with a thermodynamic budget analysis forced by satellite-retrieved precipitation and radiation. A new method is devised to characterize the vertical motion profiles in terms of the column import or export of moisture and moist static energy (MSE). The Bottom-heavy, Mid-heavy, and Top-heavy regimes are identified for every one-square-degree grid pixel accompanying tracked precipitation systems, making use of the diagnosed column export/import of moisture and MSE. Major findings are as follows. The Lagrangian evolution of convective systems is dominated by a state of dynamic equilibrium among different convective regimes rather than a monotonic progress from one regime to the next. The transition from the Bottom-heavy to Mid-heavy regimes is fed with intensifying precipitation presumably owing to a negative gross moist stability (GMS) of the Bottom-heavy regime, whereas the transition from the Mid-heavy to Top-heavy regimes dissipates the system. The Bottom-heavy to Mid-heavy transition takes a relaxation time of about 5 h in the equilibrating processes, whereas the relaxation time is estimated as roughly 20 h concerning the Mid-heavy to Top-heavy transition.

Restricted access
Xin Xu
,
Rongrong Zhang
,
Miguel A. C. Teixeira
,
Annelize van Niekerk
,
Ming Xue
,
Yixiong Lu
,
Haile Xue
,
Runqiu Li
, and
Yuan Wang

Abstract

The momentum transport by orographic gravity waves (OGWs) plays an important role in driving the large-scale circulation throughout the atmosphere and is subject to parameterization in numerical models. Current parameterization schemes, which were originally developed for coarse-resolution models, commonly assume that unresolved OGWs are hydrostatic. With the increase in the horizontal resolution of state-of-the-art numerical models, unresolved OGWs are of smaller horizontal scale and more influenced by nonhydrostatic effects (NHE), thus challenging use of the hydrostatic assumption. Based on the analytical formulae for nonhydrostatic OGWs derived in our recent study, the orographic gravity wave drag (OGWD) parameterization scheme in the Model for Prediction Across Scales is revised by accounting for NHE. Global simulations with 30-km horizontal resolution are conducted to investigate NHE on the momentum transport of OGWs and their impacts on the large-scale circulation in boreal winter. NHE are evident in regions of complex terrain such as the Tibetan Plateau, Rocky Mountains, Southern Andes and Eastern Antarctica. The parameterized surface wave momentum flux can be either reduced or enhanced depending on the relative importance of NHE and model physics-dynamics interactions. The NHE corrections to the OGWD scheme significantly reduce the easterly biases in the polar stratosphere of the Northern Hemisphere, due to both weakened OGWD in the upper troposphere and lower stratosphere and suppressed upward propagation of resolved waves into the stratosphere. However, the revised OGWD scheme only has a weak influence on the large-scale circulation in the Southern Hemisphere during boreal winter.

Restricted access
Zhiming Kuang

Abstract

Methods in system identification are used to obtain linear time-invariant state-space models that describe how horizontal averages of temperature and humidity of a large cumulus ensemble evolve with time under small forcing. The cumulus ensemble studied here is simulated with cloud-system-resolving models in radiative–convective equilibrium. The identified models extend steady-state linear response functions used in past studies and provide accurate descriptions of the transfer function, the noise model, and the behavior of cumulus convection when coupled with two-dimensional gravity waves. A novel procedure is developed to convert the state-space models into an interpretable form, which is used to elucidate and quantify memory in cumulus convection. The linear problem studied here serves as a useful reference point for more general efforts to obtain data-driven and interpretable parameterizations of cumulus convection.

Restricted access
Aman Gupta
,
Robert Reichert
,
Andreas Dörnbrack
,
Hella Garny
,
Roland Eichinger
,
Inna Polichtchouk
,
Bernd Kaifler
, and
Thomas Birner

Abstract

Gravity waves (GWs) are among the key drivers of the meridional overturning circulation in the mesosphere and upper stratosphere. Their representation in climate models suffers from insufficient resolution and limited observational constraints on their parameterizations. This obscures assessments of middle atmospheric circulation changes in a changing climate. This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer-scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanalysis (ERA5), to a coarse-resolution climate model (EMAC). Resolved vertical flux of zonal GW momentum (GWMF) is found to be stronger by a factor of at least 2–2.5 in IFS compared to ERA5. Compared to resolved GWMF in IFS, parameterizations in ERA5 and EMAC continue to inaccurately generate excessive GWMF poleward of 60°S, yielding prominent differences between resolved and parameterized GWMFs. A like-to-like validation of GW profiles in IFS and ERA5 reveals similar wave structures. Still, even at ∼1 km resolution, the resolved waves in IFS are weaker than those observed by lidar. Further, GWMF estimates across datasets reveal that temperature-based proxies, based on midfrequency approximations for linear GWs, overestimate GWMF due to simplifications and uncertainties in GW wavelength estimation from data. Overall, the analysis provides GWMF benchmarks for parameterization validation and calls for three-dimensional GW parameterizations, better upper-boundary treatment, and vertical resolution increases commensurate with increases in horizontal resolution in models, for a more realistic GW analysis.

Significance Statement

Gravity wave–induced momentum forcing forms a key component of the middle atmospheric circulation. However, complete knowledge of gravity waves, their atmospheric effects, and their long-term trends are obscured due to limited global observations, and the inability of current climate models to fully resolve them. This study combines a kilometer-scale forecast model, modern reanalysis, and a coarse-resolution climate model to first compare the resolved and parameterized momentum fluxes by gravity waves generated over the Andes, and then evaluate the fluxes using a state-of-the-art ground-based Rayleigh lidar. Our analysis reveals shortcomings in current model parameterizations of gravity waves in the middle atmosphere and highlights the sensitivity of the estimated flux to the formulation used.

Restricted access
Hao Fu
and
Morgan O’Neill

Abstract

Cloud-permitting simulations have shown that tropical cyclones (TCs) can form spontaneously in a quiescent environment with uniform sea surface temperature. While several mesoscale feedbacks are known to amplify an existing midlevel vortex, how the noisy deep convection produces the initial midlevel vortex remains unclear. This paper develops a theoretical framework to understand the evolution of the midlevel mesoscale vorticity’s histogram in the first two days of spontaneous tropical cyclogenesis, which we call the “stochastic spin-up stage”. The mesoscale vorticity is produced by two random processes related to deep convection: the random stretching of planetary vorticity (f) and the tilting of random vertical shear. The mesoscale vorticity is modeled as the sum of three independent normal distributions, which include the cyclones produced by stretching, cyclones produced by tilting, and anticyclones produced by tilting. Their collective effect is calculated with the central limit theorem. The theory predicts that the standard deviation of the midlevel mesoscale vorticity is universally proportional to the square root of the domain-averaged accumulated rainfall, agreeing with simulations. The theory predicts a critical latitude below which tilting is dominant in producing mesoscale vorticity. Treating the magnitude of random vertical shear as a fitting parameter, the critical latitude is shown to be around 12°N. Because the magnitude of vertical shear should be larger in the real atmosphere, this result suggests tilting is an important source of mesoscale vorticity fluctuation in the tropics.

Restricted access
Matthieu Kohl
and
Paul A. O’Gorman

Abstract

The vertical velocity distribution in the atmosphere is asymmetric with stronger upward than downward motion. This asymmetry is important for the distribution of precipitation and its extremes and for an effective static stability that has been used to represent the effects of latent heating on extratropical eddies. Idealized GCM simulations show that the asymmetry increases as the climate warms, but current moist dynamical theories based around small-amplitude modes greatly overestimate the increase in asymmetry with warming found in the simulations. Here, we first analyze the changes in asymmetry with warming using numerical inversions of a moist quasigeostrophic omega equation applied to output from the idealized GCM. The inversions show that increases in the asymmetry with warming in the GCM simulations are primarily related to decreases in moist static stability on the left-hand side of the moist omega equation, whereas the dynamical forcing on the right-hand side of the omega equation is unskewed and contributes little to the asymmetry of the vertical velocity distribution. By contrast, increases in asymmetry with warming for small-amplitude modes are related to changes in both moist static stability and dynamical forcing leading to enhanced asymmetry in warm climates. We distill these insights into a toy model of the moist omega equation that is solved for a given moist static stability and wavenumber of the dynamical forcing. In comparison to modal theory, the toy model better reproduces the slow increase of the asymmetry with climate warming in the idealized GCM simulations and over the seasonal cycle from winter to summer in reanalysis.

Significance Statement

Upward velocities are stronger than downward velocities in the atmosphere, and this asymmetry is important for the distribution of precipitation because precipitation is linked to upward motion. An important and open question is what sets this asymmetry and how much it increases as the climate warms. Past work has shown that current theories greatly overestimate the increase in asymmetry with warming in idealized simulations. In this work, we develop a more complete theory and show that it is able to better reproduce the slow increase of the asymmetry with warming that is found over the seasonal cycle from winter to summer and in idealized simulations of warming climates.

Restricted access
Alan Shapiro
,
Jason Chiappa
, and
David B. Parsons

Abstract

Weak but persistent synoptic-scale ascent may play a role in the initiation or maintenance of nocturnal convection over the central United States. An analytical model is used to explore the nocturnal low-level jets (NLLJ) and ascent that develop in an idealized diurnally varying frictional (Ekman) boundary layer in a neutrally stratified barotropic environment when the flow aloft is a zonally propagating Rossby wave. Steady-periodic solutions are obtained of the linearized Reynolds-averaged Boussinesq-approximated equations of motion on a beta plane with an eddy viscosity that is specified to increase abruptly at sunrise and decrease abruptly at sunset. Rayleigh damping terms are used to parameterize momentum loss due to radiation of inertia–gravity waves. The model-predicted vertical velocity is (approximately) proportional to the wavenumber and wave amplitude. There are two main modes of ascent in midlatitudes, an afternoon mode and a nocturnal mode. The latter arises as a gentle but persistent surge induced by the decrease of turbulence at sunset, the same mechanism that triggers inertial oscillations in the Blackadar theory of NLLJs. If the Rayleigh damping terms are omitted, the boundary layer depth becomes infinite at three critical latitudes, and the vertical velocity becomes infinite far above the ground at two of those latitudes. With the damping terms retained, the solution is well behaved. Peak daytime ascent in the model occurs progressively later in the afternoon at more southern locations (in the Northern Hemisphere) until the first (most northern) critical latitude is reached; south of that latitude the nocturnal mode is dominant.

Restricted access
Jonathan Lin
and
Kerry Emanuel

Abstract

The steady response of the stratosphere to tropospheric thermal forcing via an SST perturbation is considered in two separate theoretical models. It is first shown that an SST anomaly imposes a geopotential anomaly at the tropopause. Solutions to the linearized quasigeostrophic potential vorticity equations are then used to show that the vertical length scale of a tropopause geopotential anomaly is initially shallow, but significantly increased by diabatic heating from radiative relaxation. This process is a quasi-balanced response of the stratosphere to tropospheric forcing. A previously developed, coupled troposphere–stratosphere model is then introduced and modified. Solutions under steady, zonally symmetric SST forcing in the linear β-plane model show that the upward stratospheric penetration of the corresponding tropopause geopotential anomaly is controlled by two nondimensional parameters: 1) a dynamical aspect ratio and 2) a ratio between tropospheric and stratospheric drag. The meridional scale of the SST anomaly, radiative relaxation rate, and wave drag all significantly modulate these nondimensional parameters. Under Earthlike estimates of the nondimensional parameters, the theoretical model predicts stratospheric temperature anomalies 2–3 larger in magnitude than that in the boundary layer, approximately in line with observational data. Using reanalysis data, the spatial variability of temperature anomalies in the troposphere is shown to have remarkable coherence with that of the lower stratosphere, which further supports the existence of a quasi-balanced response of the stratosphere to SST forcing. These findings suggest that besides mechanical and radiative forcing, there is a third way the stratosphere can be forced—through the tropopause via tropospheric thermal forcing.

Significance Statement

Upward motion in the tropical stratosphere, the layer of atmosphere above where most weather occurs, is thought to be controlled by weather disturbances that propagate upward and dissipate in the stratosphere. The strength of this upward motion is important since it sets the global distribution of ozone. We formulate and use simple mathematical models to show the vertical motion in the stratosphere can also depend on the warming in the troposphere, the layer of atmosphere where humans live. We use the theory as an explanation for our observations of inverse correlations between the ocean temperature and the stratosphere temperature. These findings suggest that local stratospheric cooling may be coupled to local tropospheric warming.

Restricted access