Browse
Abstract
It has been over 75 years since the concept of directly suppressing lightning by modifying thunderstorm cloud processes was first proposed as a technique for preventing wildfire ignitions. Subsequent decades produced a series of successful field campaigns that demonstrated several techniques for interrupting storm electrification, motivated in part by the prospect of protecting Apollo-era rocket launches from lightning strike. Despite the technical success of these research programs, funding and interest diminished until the final field experiment in 1975 marked the last large-scale activity toward developing lightning prevention technology. Having lost widespread awareness over the ensuing 50 years, these pioneering efforts in experimental cloud physics have largely been forgotten, and this approach for mitigating lightning hazards has fallen into obscurity. At the present day, risks from lightning-ignited wildfires to lives, property, and infrastructure are once again a major topic of concern. Similarly, the rapid development of an emerging commercial space sector is placing new demands on airspace management and launch scheduling. These modern challenges may potentially be addressed by a seemingly antiquated concept—lightning suppression—but considerations must be made to understand the consequences of deploying this technology. Nonetheless, the possible economic, environmental, and societal benefits of this approach merit a critical reevaluation of this hazard mitigation technology in the current era.
Abstract
It has been over 75 years since the concept of directly suppressing lightning by modifying thunderstorm cloud processes was first proposed as a technique for preventing wildfire ignitions. Subsequent decades produced a series of successful field campaigns that demonstrated several techniques for interrupting storm electrification, motivated in part by the prospect of protecting Apollo-era rocket launches from lightning strike. Despite the technical success of these research programs, funding and interest diminished until the final field experiment in 1975 marked the last large-scale activity toward developing lightning prevention technology. Having lost widespread awareness over the ensuing 50 years, these pioneering efforts in experimental cloud physics have largely been forgotten, and this approach for mitigating lightning hazards has fallen into obscurity. At the present day, risks from lightning-ignited wildfires to lives, property, and infrastructure are once again a major topic of concern. Similarly, the rapid development of an emerging commercial space sector is placing new demands on airspace management and launch scheduling. These modern challenges may potentially be addressed by a seemingly antiquated concept—lightning suppression—but considerations must be made to understand the consequences of deploying this technology. Nonetheless, the possible economic, environmental, and societal benefits of this approach merit a critical reevaluation of this hazard mitigation technology in the current era.
Abstract
Difficulty in using observations to isolate the impacts of aerosols from meteorology on deep convection often stems from the inability to resolve the spatiotemporal variations in the environment serving as the storm’s inflow region. During the U.S. Department of Energy (DOE) Tracking Aerosol Convection interactions Experiment (TRACER) in June–September 2022, a Texas A&M University (TAMU) team conducted a mobile field campaign to characterize the meteorological and aerosol variability in air masses that serve as inflow to convection across the ubiquitous mesoscale boundaries associated with the sea and bay breezes in the Houston, Texas, region. These boundaries propagate inland over the fixed DOE Atmospheric Radiation Measurement (ARM) sites. However, convection occurs on either or both the continental or maritime sides or along the boundary. The maritime and continental air masses serving as convection inflow may be quite distinct, with different meteorological and aerosol characteristics that fixed-site measurements cannot simultaneously sample. Thus, a primary objective of TAMU TRACER was to provide mobile measurements similar to those at the fixed sites, but in the opposite air mass across these moving mesoscale boundaries. TAMU TRACER collected radiosonde, lidar, aerosol, cloud condensation nuclei (CCN), and ice nucleating particle (INP) measurements on 29 enhanced operations days covering a variety of maritime, continental, outflow, and prefrontal air masses. This paper summarizes the TAMU TRACER deployment and measurement strategy, instruments, and available datasets and provides sample cases highlighting differences between these mobile measurements and those made at the ARM sites. We also highlight the exceptional TAMU TRACER undergraduate student participation in high-impact learning activities through forecasting and field deployment opportunities.
Abstract
Difficulty in using observations to isolate the impacts of aerosols from meteorology on deep convection often stems from the inability to resolve the spatiotemporal variations in the environment serving as the storm’s inflow region. During the U.S. Department of Energy (DOE) Tracking Aerosol Convection interactions Experiment (TRACER) in June–September 2022, a Texas A&M University (TAMU) team conducted a mobile field campaign to characterize the meteorological and aerosol variability in air masses that serve as inflow to convection across the ubiquitous mesoscale boundaries associated with the sea and bay breezes in the Houston, Texas, region. These boundaries propagate inland over the fixed DOE Atmospheric Radiation Measurement (ARM) sites. However, convection occurs on either or both the continental or maritime sides or along the boundary. The maritime and continental air masses serving as convection inflow may be quite distinct, with different meteorological and aerosol characteristics that fixed-site measurements cannot simultaneously sample. Thus, a primary objective of TAMU TRACER was to provide mobile measurements similar to those at the fixed sites, but in the opposite air mass across these moving mesoscale boundaries. TAMU TRACER collected radiosonde, lidar, aerosol, cloud condensation nuclei (CCN), and ice nucleating particle (INP) measurements on 29 enhanced operations days covering a variety of maritime, continental, outflow, and prefrontal air masses. This paper summarizes the TAMU TRACER deployment and measurement strategy, instruments, and available datasets and provides sample cases highlighting differences between these mobile measurements and those made at the ARM sites. We also highlight the exceptional TAMU TRACER undergraduate student participation in high-impact learning activities through forecasting and field deployment opportunities.
Abstract
Forecast verification is critical for continuous improvement in meteorological organizations. The Jive verification system was originally developed to assess the accuracy of public weather forecasts issued by the Australian Bureau of Meteorology. It started as a research project in 2015 and gradually evolved to be a Bureau operational verification system in 2022. The system includes daily verification dashboards for forecasters to visualize recent forecast performance and “Evidence Targeted Automation” dashboards for exploring the performance of competing forecast systems. Additionally, Jive includes a Jupyter Notebook server with the Jive Python library which supports research experiments, case studies, and the development of new verification metrics and tools.
This paper describes the Jive verification system and how it helped bring verification to the forefront at the Bureau of Meteorology, leading to more accurate, streamlined forecasts. Jive has provided evidence to support forecast automation decisions and has helped to understand the evolving role of meteorologists in the forecast process. It has given operational meteorologists tools for evaluating forecast processes, including identifying when and how manual interventions lead to superior predictions. Work on Jive led to new verification science, including novel metrics that are decision-focused, including diagnostics for extreme conditions. Jive also provided the Bureau with an enterprise-wide data analysis environment and has prompted a clarification of forecast definitions.
These collective impacts have resulted in more accurate forecasts, ultimately benefiting society, and building trust with forecast users. These positive outcomes highlight the importance of meteorological organizations investing in verification science and technology.
Abstract
Forecast verification is critical for continuous improvement in meteorological organizations. The Jive verification system was originally developed to assess the accuracy of public weather forecasts issued by the Australian Bureau of Meteorology. It started as a research project in 2015 and gradually evolved to be a Bureau operational verification system in 2022. The system includes daily verification dashboards for forecasters to visualize recent forecast performance and “Evidence Targeted Automation” dashboards for exploring the performance of competing forecast systems. Additionally, Jive includes a Jupyter Notebook server with the Jive Python library which supports research experiments, case studies, and the development of new verification metrics and tools.
This paper describes the Jive verification system and how it helped bring verification to the forefront at the Bureau of Meteorology, leading to more accurate, streamlined forecasts. Jive has provided evidence to support forecast automation decisions and has helped to understand the evolving role of meteorologists in the forecast process. It has given operational meteorologists tools for evaluating forecast processes, including identifying when and how manual interventions lead to superior predictions. Work on Jive led to new verification science, including novel metrics that are decision-focused, including diagnostics for extreme conditions. Jive also provided the Bureau with an enterprise-wide data analysis environment and has prompted a clarification of forecast definitions.
These collective impacts have resulted in more accurate forecasts, ultimately benefiting society, and building trust with forecast users. These positive outcomes highlight the importance of meteorological organizations investing in verification science and technology.
Abstract
The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) held seven targeted observing periods (TOPs) during the 2022 austral winter to enhance atmospheric predictability over the Southern Ocean and Antarctica. The TOPs of 5–10-day duration each featured the release of additional radiosonde balloons, more than doubling the routine sounding program at the 24 participating stations run by 14 nations, together with process-oriented observations at selected sites. These extra sounding data are evaluated for their impact on forecast skill via data denial experiments with the goal of refining the observing system to improve numerical weather prediction for winter conditions. Extensive observations focusing on clouds and precipitation primarily during atmospheric river (AR) events are being applied to refine model microphysical parameterizations for the ubiquitous mixed-phase clouds that frequently impact coastal Antarctica. Process studies are being facilitated by high-time-resolution series of observations and forecast model output via the YOPP Model Intercomparison and Improvement Project (YOPPsiteMIIP). Parallel investigations are broadening the scope and impact of the YOPP-SH winter TOPs. Studies of the Antarctic tourist industry’s use of weather services show the scope for much greater awareness of the availability of forecast products and the skill they exhibit. The Sea Ice Prediction Network South (SIPN South) analysis of predictions of the sea ice growth period reveals that the forecast skill is superior to the sea ice retreat phase.
Abstract
The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) held seven targeted observing periods (TOPs) during the 2022 austral winter to enhance atmospheric predictability over the Southern Ocean and Antarctica. The TOPs of 5–10-day duration each featured the release of additional radiosonde balloons, more than doubling the routine sounding program at the 24 participating stations run by 14 nations, together with process-oriented observations at selected sites. These extra sounding data are evaluated for their impact on forecast skill via data denial experiments with the goal of refining the observing system to improve numerical weather prediction for winter conditions. Extensive observations focusing on clouds and precipitation primarily during atmospheric river (AR) events are being applied to refine model microphysical parameterizations for the ubiquitous mixed-phase clouds that frequently impact coastal Antarctica. Process studies are being facilitated by high-time-resolution series of observations and forecast model output via the YOPP Model Intercomparison and Improvement Project (YOPPsiteMIIP). Parallel investigations are broadening the scope and impact of the YOPP-SH winter TOPs. Studies of the Antarctic tourist industry’s use of weather services show the scope for much greater awareness of the availability of forecast products and the skill they exhibit. The Sea Ice Prediction Network South (SIPN South) analysis of predictions of the sea ice growth period reveals that the forecast skill is superior to the sea ice retreat phase.
Abstract
The 2023 Atlantic hurricane season was above normal, producing 20 named storms, 7 hurricanes, 3 major hurricanes, and seasonal accumulated cyclone energy that exceeded the 1991–2020 average. Hurricane Idalia was the most damaging hurricane of the year, making landfall as a Category 3 hurricane in Florida, resulting in eight direct fatalities and 3.6 billion U.S. dollars in damage. The above-normal 2023 hurricane season occurred during a strong El Niño event. El Niño events tend to be associated with increased vertical wind shear across the Caribbean and tropical Atlantic, yet vertical wind shear during the peak hurricane season months of August–October was well below normal. The primary driver of the above-normal season was likely record warm tropical Atlantic sea surface temperatures (SSTs), which effectively counteracted some of the canonical impacts of El Niño. The extremely warm tropical Atlantic and Caribbean were associated with weaker-than-normal trade winds driven by an anomalously weak subtropical ridge, resulting in a positive wind–evaporation–SST feedback. We tested atmospheric circulation sensitivity to SSTs in both the tropical and subtropical Pacific and the Atlantic using the atmospheric component of the Community Earth System Model, version 2.3. We found that the extremely warm Atlantic was the primary driver of the reduced vertical wind shear relative to other moderate/strong El Niño events. The concentrated warmth in the eastern tropical Pacific in August–October may have contributed to increased levels of vertical wind shear than if the warming had been more evenly spread across the eastern and central tropical Pacific.
Abstract
The 2023 Atlantic hurricane season was above normal, producing 20 named storms, 7 hurricanes, 3 major hurricanes, and seasonal accumulated cyclone energy that exceeded the 1991–2020 average. Hurricane Idalia was the most damaging hurricane of the year, making landfall as a Category 3 hurricane in Florida, resulting in eight direct fatalities and 3.6 billion U.S. dollars in damage. The above-normal 2023 hurricane season occurred during a strong El Niño event. El Niño events tend to be associated with increased vertical wind shear across the Caribbean and tropical Atlantic, yet vertical wind shear during the peak hurricane season months of August–October was well below normal. The primary driver of the above-normal season was likely record warm tropical Atlantic sea surface temperatures (SSTs), which effectively counteracted some of the canonical impacts of El Niño. The extremely warm tropical Atlantic and Caribbean were associated with weaker-than-normal trade winds driven by an anomalously weak subtropical ridge, resulting in a positive wind–evaporation–SST feedback. We tested atmospheric circulation sensitivity to SSTs in both the tropical and subtropical Pacific and the Atlantic using the atmospheric component of the Community Earth System Model, version 2.3. We found that the extremely warm Atlantic was the primary driver of the reduced vertical wind shear relative to other moderate/strong El Niño events. The concentrated warmth in the eastern tropical Pacific in August–October may have contributed to increased levels of vertical wind shear than if the warming had been more evenly spread across the eastern and central tropical Pacific.
Abstract
The NASA Convective Processes Experiment - Cabo Verde (CPEX-CV) field campaign took place in September 2022 out of Sal Island, Cabo Verde. A unique payload aboard the NASA DC-8 aircraft equipped with advanced remote sensing and in situ instrumentation, in conjunction with radiosonde launches and satellite observations, allowed CPEX-CV to target the coupling between atmospheric dynamics, marine boundary layer properties, convection, and the dust-laden Saharan Air Layer in the data-sparse tropical East Atlantic region. CPEX-CV provided measurements of African Easterly Wave environments, diurnal cycle impacts on convective lifecycle, and several Saharan dust outbreaks, including the highest dust optical depth observed by the DC-8 interacting with what would become Tropical Storm Hermine. Preliminary results from CPEX-CV underscore the positive impact of dedicated tropical East Atlantic observations on downstream forecast skill, including sampling environmental forcings impacting the development of several non-developing and developing convective systems such as Hurricanes Fiona and Ian. Combined airborne radar, lidar, and radiometer measurements uniquely provide near-storm environments associated with convection on various spatiotemporal scales and, with in situ observations, insights into controls on Saharan dust properties with transport. The DC-8 also collaborated with the European Space Agency to perform coordinated validation flights under the Aeolus spaceborne wind lidar and over the Mindelo ground site, highlighting the enhanced sampling potential through partnership opportunities. CPEX-CV engaged in professional development through dedicated team building exercises that equipped the team with a cohesive approach for targeting CPEX-CV science objectives and promoted active participation of scientists across all career stages.
Abstract
The NASA Convective Processes Experiment - Cabo Verde (CPEX-CV) field campaign took place in September 2022 out of Sal Island, Cabo Verde. A unique payload aboard the NASA DC-8 aircraft equipped with advanced remote sensing and in situ instrumentation, in conjunction with radiosonde launches and satellite observations, allowed CPEX-CV to target the coupling between atmospheric dynamics, marine boundary layer properties, convection, and the dust-laden Saharan Air Layer in the data-sparse tropical East Atlantic region. CPEX-CV provided measurements of African Easterly Wave environments, diurnal cycle impacts on convective lifecycle, and several Saharan dust outbreaks, including the highest dust optical depth observed by the DC-8 interacting with what would become Tropical Storm Hermine. Preliminary results from CPEX-CV underscore the positive impact of dedicated tropical East Atlantic observations on downstream forecast skill, including sampling environmental forcings impacting the development of several non-developing and developing convective systems such as Hurricanes Fiona and Ian. Combined airborne radar, lidar, and radiometer measurements uniquely provide near-storm environments associated with convection on various spatiotemporal scales and, with in situ observations, insights into controls on Saharan dust properties with transport. The DC-8 also collaborated with the European Space Agency to perform coordinated validation flights under the Aeolus spaceborne wind lidar and over the Mindelo ground site, highlighting the enhanced sampling potential through partnership opportunities. CPEX-CV engaged in professional development through dedicated team building exercises that equipped the team with a cohesive approach for targeting CPEX-CV science objectives and promoted active participation of scientists across all career stages.