Browse

You are looking at 1 - 10 of 23,321 items for :

  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All
Jouni Heiskanen, Christian Brümmer, Nina Buchmann, Carlo Calfapietra, Huilin Chen, Bert Gielen, Thanos Gkritzalis, Samuel Hammer, Susan Hartman, Mathias Herbst, Ivan A. Janssens, Armin Jordan, Eija Juurola, Ute Karstens, Ville Kasurinen, Bart Kruijt, Harry Lankreijer, Ingeborg Levin, Maj-Lena Linderson, Denis Loustau, Lutz Merbold, Cathrine Lund Myhre, Dario Papale, Marian Pavelka, Kim Pilegaard, Michel Ramonet, Corinna Rebmann, Janne Rinne, Léonard Rivier, Elena Saltikoff, Richard Sanders, Martin Steinbacher, Tobias Steinhoff, Andrew Watson, Alex T. Vermeulen, Timo Vesala, Gabriela Vítková, and Werner Kutsch

Abstract

Since 1750, land use change and fossil fuel combustion has led to a 46 % increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limiting global temperature increases to well below 2°C above pre-industrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere is sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.

Full access
Toby N. Carlson, Arthur A. Person, and Thomas J. Canich

Abstract

Simsphere, a soil/vegetation/atmosphere/transfer (SVAT) model developed at Penn State, can be downloaded from the web for use by students and researchers. In existence for several decades, Simsphere has figured in both the classroom and in research at several universities. As such, Simsphere has been supported by a knowledgeable group of academic users and has been applied in a variety of applications, such as in remote sensing of surface soil water content, and in the assessment of water and ozone stresses on plants. This paper describes the model and how it can be downloaded and run.

Full access
Hui Yu, Guomin Chen, Cong Zhou, Wai Kin Wong, Mengqi Yang, Yinglong Xu, Peiyan Chen, Rijin Wan, and Xinrong Hu

Abstract

The annual-mean position errors (PE) of tropical cyclone (TC) track forecasts from three forecast agencies (RSMC-Tokyo, CMA, and JTWC) are analyzed to document the past improvements and project future tendency in track forecast accuracy for TCs in the western North Pacific. An improvement of 48 h (2-day) in lead time has been achieved in the past thirty years, but with noticeable stepwise periods of improvements with superposed short-term fluctuations. The stepwise improvement features differ among the three forecast agencies, but are highly related to the development of objective forecast guidance and the application strategy. As demonstrated by an exponential model for the growth of PEs with lead time for TCs of tropical storm category and above, the improvements in the past ten years have mainly been due to the reduction in analysis errors rather than the reduction in the error growth rate. If the current trend continues, a further 2-day improvement in TC track forecast lead times may be projected for the coming fifteen years up to 2035, and we certainly have not reached yet the limit of TC track predictability in the western North Pacific.

Full access
Full access
Kelly Mahoney, Chesley McColl, Douglas M. Hultstrand, William D. Kappel, Bill McCormick, and Gilbert P. Compo

Abstract

Accurate estimation of the potential “upper limit” for extreme precipitation is critical for dam safety and water resources management, as dam failures pose significant risks to life and property. Methods used to estimate the theoretical “upper limit” of precipitation are often outdated and in need of updating. The rarity of extreme events means that old storms with limited observational data are often used to define the upper bound of precipitation.

Observations of many important old storms are limited in spatial and temporal coverage, and sometimes of dubious quality. This reduces confidence in flood hazard assessments used in dam safety evaluations and leads to unknown or uncertain societal risk.

This paper describes a method for generating and applying ensembles of high-resolution, state-of-the-art numerical model simulations of historical past extreme precipitation events to meet contemporary stakeholder needs. The method was designed as part of a research-to-application-focused partnership project to update state dam safety rules in Colorado and New Mexico. The results demonstrated multiple stakeholder and user benefits which were applied directly into storm analyses utilized for extreme rainfall estimation, and diagnostics were developed and ultimately used to update Colorado state dam safety rules, officially passed in January 2020. We discuss how what started as a prototype research foray to meet a specific user need may ultimately inform wider adoption of numerical simulations for water resources risk assessment, and how the historical event downscaling method performed offers near-term, implementable improvements to current dam safety flood risk estimates that can better serve society today.

Full access
Filippo Giorgi, Erika Coppola, Daniela Jacob, Claas Teichmann, Sabina Abba Omar, Moetasim Ashfaq, Nikolina Ban, Katharina Bülow, Melissa Bukovsky, Lars Buntemeyer, Tereza Cavazos, James Ciarlo', Rosmeri Porfirio Da Rocha, Sushant Das, Fabio di Sante, Jason P. Evans, Xuejie Gao, Graziano Giuliani, Russell H. Glazer, Peter Hoffmann, Eun-Soon Im, Gaby Langendijk, Ludwig Lierhammer, Marta Llopart, Sebastial Mueller, Rosa Luna-Nino, Rita Nogherotto, Emanuela Pichelli, Francesca Raffaele, Michelle Reboita, Diana Rechid, Armelle Remedio, Thomas Remke, Windmanagda Sawadogo, Kevin Sieck, Jose' Abraham Torres-Alavez, and Torsten Weber

Abstract

We describe the first effort within the Coordinated Regional Climate Downscaling Experiment - Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of 21st century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over 9 CORDEX domains at ~25 km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors and climate service activities. The future of the CORDEX-CORE initiative is also discussed.

Full access
Wouter Dorigo, Stephan Dietrich, Filipe Aires, Luca Brocca, Sarah Carter, Jean-François Cretaux, David Dunkerley, Hiroyuki Enomoto, René Forsberg, Andreas Güntner, Michaela I. Hegglin, Rainer Hollmann, Dale F. Hurst, Johnny A. Johannessen, Christian Kummerow, Tong Lee, Kari Luojus, Ulrich Looser, Diego G. Miralles, Victor Pellet, Thomas Recknagel, Claudia Ruz Vargas, Udo Schneider, Philippe Schoeneich, Marc Schröder, Nigel Tapper, Valery Vuglinsky, Wolfgang Wagner, Lisan Yu, Luca Zappa, Michael Zemp, and Valentin Aich

ABSTRACT

Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.

Full access
Chris Kidd, George Huffman, Viviana Maggioni, Philippe Chambon, and Riko Oki

Abstract

To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10–12 sensors at any one time. Over the same period, a broad range of science and user communities has become increasingly dependent on the precipitation products provided by these sensors. The constellation presently consists of both conical and cross-track-scanning precipitation-capable multichannel instruments, many of which are beyond their operational and design lifetime but continue to operate through the cooperation of the responsible agencies. The Group on Earth Observations and the Coordinating Group for Meteorological Satellites (CGMS), among other groups, have raised the issue of how a robust, future precipitation constellation should be constructed. The key issues of current and future requirements for the mapping of global precipitation from satellite sensors can be summarized as providing 1) sufficiently fine spatial resolutions to capture precipitation-scale systems and reduce the beam-filling effects of the observations; 2) a wide channel diversity for each sensor to cover the range of precipitation types, characteristics, and intensities observed across the globe; 3) an observation interval that provides temporal sampling commensurate with the variability of precipitation; and 4) precipitation radars and radiometers in low-inclination orbit to provide a consistent calibration source, as demonstrated by the first two spaceborne radar–radiometer combinations on the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission Core Observatory. These issues are critical in determining the direction of future constellation requirements while preserving the continuity of the existing constellation necessary for long-term climate-scale studies.

Full access
Rachel Hogan Carr, Kathryn Semmens, Burrell Montz, and Keri Maxfield

Abstract

Uncertainty is everywhere and understanding how individuals understand and use forecast information to make decisions given varying levels of certainty is crucial for effectively communicating risks and weather hazards. To advance prior research about how various audiences use and understand probabilistic and deterministic hydrologic forecast information, a social science study involving multiple scenario-based focus groups and surveys at four locations (Eureka, California; Gunnison, Colorado; Durango, Colorado; Owego, New York) across the United States was conducted with professionals and residents. Focusing on the Hydrologic Ensemble Forecast System, the Advanced Hydrologic Prediction Service, and briefings, this research investigated how users tolerate divergence in probabilistic and deterministic forecasts and how deterministic and probabilistic river level forecasts can be presented simultaneously without causing confusion. This study found that probabilistic forecasts introduce a tremendous amount of new, yet valuable, information but can quickly overwhelm users based on how they are conveyed and communicated. Some were unaware of resources available, or how to find, sort, and prioritize among all the data and information. Importantly, when presented with a divergence between deterministic and probabilistic forecasts, most sought out more information while some others reported diminished confidence in the products. Users in all regions expressed a desire to “ground truth” the accuracy of probabilistic forecasts, understand the drivers of the forecasts, and become more familiar with them. In addition, a prototype probabilistic product that includes a deterministic forecast was tested, and suggestions for communicating probabilistic information through the use of briefing packages is proposed.

Full access
David Halpern

Abstract

In 1976, a pilot experiment, called first Equatorial Mooring (EQUA-1), tested an innovative technique for anchoring a taut-line surface mooring at 0°, 150°W where the water depth is 4.5 km. The 36-day deployment contained a wind recorder and fixed-level current meters at 50 and 100 m in the Equatorial Undercurrent (EUC). The following year, in a second pilot experiment, named EQUA-2, a similar mooring was deployed at 0°, 125°W for 99 days. EQUA-2, with current meters at 10, 50, 100, 150, and 200 m, recorded a surge in EUC transport during April 1977 when 3-day-averaged eastward current speeds at 50-m depth reached 2 m s−1. The associated eastward transport per unit meridional width over the 50–200-m layer was 190 m2 s−1. Based on observations recorded in April 1980, the EQUA-2 pulse would correspond to a total EUC transport surge of about 38 Sv (1 Sv ≡ 106 m3 s−1) and would represent an equatorially trapped first-mode baroclinic Kelvin wave. This paper describes EQUA Project observations and why and how I created the high-risk-of-failure opportunity to record pioneering time series measurements at the equator. The enduring legacy of the EQUA Project is the sustained maintenance of in situ surface wind and upper-ocean current and temperature measurements at numerous sites in the equatorial oceans, starting in the Pacific to improve forecasts of the El Niño and La Niña phenomenon. For example, the 40-yr records of surface wind and upper-ocean current and temperature measurements at 0°, 110°W and 0°, 140°W are some of oceanography’s longest time series recorded far from land.

Full access