Browse

You are looking at 1 - 10 of 14,635 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Hugh Morrison, John M. Peters, Kamal Kant Chandrakar, and Steven C. Sherwood

Abstract

This study examines two factors impacting initiation of moist deep convection: free-tropospheric environmental relative humidity (ϕE) and horizontal scale of subcloud ascent (R sub), the latter exerting a dominant control on cumulus cloud width. A simple theoretical model is used to formulate a “scale selection” hypothesis: that a minimum R sub is required for moist convection to go deep, and that this minimum scale decreases with increasing ϕE. Specifically, the ratio of Rsub2 to saturation deficit (1 − ϕE) must exceed a certain threshold value that depends on cloud-layer environmental lapse rate. Idealized, large-eddy simulations of moist convection forced by horizontally varying surface fluxes show strong sensitivity of maximum cumulus height to both ϕE and R sub consistent with the hypothesis. Increasing R sub by only 300–400 m can lead to a large increase (>5 km) in cloud height. A passive tracer analysis shows that the bulk fractional entrainment rate decreases rapidly with R sub but depends little on ϕE. However, buoyancy dilution increases as either R sub or ϕE decreases; buoyancy above the level of free convection is rapidly depleted in dry environments when R sub is small. While deep convective initiation occurs with an increase in relative humidity of the near environment from moistening by earlier convection, the importance of this moisture preconditioning is inconclusive as it is accompanied by an increase in R sub. Overall, it is concluded that small changes to R sub driven by external forcing or by convection itself could be a dominant regulator of deep convective initiation.

Restricted access
Zhong Chen

Abstract

The hydroxyl radical (OH) is one of the most reactive trace species and plays several important roles in the photochemical equilibrium and energy balance in the mesosphere. Global observations of OH from satellite instruments have a role to play in the study of OH and water vapor variations. This study describes an advanced algorithm to detect mesospheric OH emission profiles from the Suomi NPP satellite OMPS/LP. A triplet technique has been adapted to the OMPS/LP radiance measurements for determining OH emission signatures and OH Index (OHI) from the OH A2Σ+2 П 0-0 band near 308.8 nm wavelength. The derived mesospheric profiles provide an overall picture of the vertical distribution of OHI between 70 km to 84 km and seasonal and latitudinal variability of the strength and height of the OHI. The observed annual cycle is correlated with the water vapor cycle and anti-correlated with the mesospheric temperature cycle. The data show that the relationships persist during the period of April 2012 – December 2020. The seasonal behavior of OHI may be associated with variations in solar illumination or mesospheric water vapor abundance. The influence of solar illumination is dominant in the mid-latitudes, while the OHI pattern is dominated by water vapor photolysis and other influences in the tropics.

Restricted access
Timothy J. Wagner, Alan C. Czarnetzki, Megan Christiansen, R. Bradley Pierce, Charles O. Stanier, Angela F. Dickens, and Edwin W. Eloranta

Abstract

Ground-based thermodynamic and kinematic profilers were placed adjacent to the western shore of Lake Michigan at two sites as part of the 2017 Lake Michigan Ozone Study. The southern site near Zion, Illinois, hosted a microwave radiometer (MWR) and a sodar wind profiler, while the northern site in Sheboygan, Wisconsin, featured an Atmospheric Emitted Radiance Interferometer (AERI), a Doppler lidar, and a High Spectral Resolution Lidar (HSRL). Each site experienced several lake breeze events during the experiment. Composite time series and time/height cross sections were constructed relative to the lake breeze arrival time so that commonalities across events could be explored.

The composited surface observations indicate that the wind direction of the lake breeze was consistently southeasterly at both sites regardless of its direction before the arrival of the lake breeze front. Surface relative humidity increased with the arriving lake breeze, though this was due to cooler air temperatures as absolute moisture content stayed the same or decreased. The profiler observations show that the lake breeze penetrated deeper when the local environment was unstable and pre-existing flow was weak. The cold air associated with the lake breeze remained confined to the lowest 200 m of the troposphere even if the wind shift was observed at higher altitudes. The evolution of the lake breeze corresponded well to observed changes in baroclinicity and calculated changes in circulation. Collocated observations of aerosols showed increases in number and mass concentrations after the passage of the lake breeze front.

Restricted access
Mohammad Allouche, Elie Bou-Zeid, Cedrick Ansorge, Gabriel G. Katul, Marcelo Chamecki, Otavio Acevedo, Sham Thanekar, and Jose D. Fuentes

Abstract

Intermittent transitions between turbulent and non-turbulent states are ubiquitous in the stable atmospheric surface layer (ASL). Data from two field experiments in Utqiagvik, Alaska, and from direct numerical simulations are used to probe these state transitions so as to (i) identify statistical metrics for the detection of intermittency, (ii) probe the physical origin of turbulent bursts, and (iii) quantify intermittency effects on overall fluxes and their representation in closure models. The analyses reveal three turbulence regimes, two of which correspond to weakly turbulent periods accompanied by intermittent behavior (regime 1: intermittent, regime 2: transitional), while the third is associated with a fully turbulent flow. Based on time series of the turbulence kinetic energy (TKE), two non-dimensional parameters are proposed to diagnostically categorize the ASL state into these regimes; the first characterizes the weakest turbulence state, while the second describes the range of turbulence variability. The origins of intermittent turbulence activity are then investigated based on the TKE budget over the identified bursts. While the quantitative results depend on the height, the analyses indicate that these bursts are predominantly advected by the mean flow, produced locally by mechanical shear, or lofted from lower levels by turbulent ejections. Finally, a new flux model is proposed using the vertical velocity variance in combination with different mixing length scales. The model provides improved representation (correlation coefficients with observations of 0.61 for momentum and 0.94 for sensible heat) compared to Monin–Obukhov similarity (correlation coefficients of 0.0047 for momentum and 0.49 for sensible heat), thus opening new pathways for improved parametrizations in coarse atmospheric models.

Restricted access
Thomas S. Ehrmann and Stephen J. Colucci

Abstract

A dry-core idealized general circulation model with a stratospheric polar vortex in the northern hemisphere is run with a combination of simplified topography and imposed tropospheric temperature perturbations, each located in the northern hemisphere with a zonal wave number of one. The phase difference between the imposed temperature wave and the topography is varied to understand what effect this has on the occurrence of polar vortex displacements. Geometric moments are used to identify the centroid of the polar vortex for the purposes of classifying whether or not the polar vortex is displaced. Displacements of the polar vortex are a response to increased tropospheric wave activity. Compared to a model run with only topography, the likelihood of the polar vortex being displaced increases when the warm region is located west of the topography peak, and decreases when the cold region is west of the topography peak. This response from the polar vortex is due to the modulation of vertically propogating wave activity by the temperature forcing. When the southerly winds on the western side of the topographically forced anticyclone are collocated with warm or cold temperature forcing, the vertical wave activity flux in the troposphere becomes more positive or negative, respectively. This is in line with recent reanalysis studies which showed that anomalous warming west of the surface pressure high, in the climatological standing wave, precedes polar vortex disturbances.

Restricted access
Jing Xu and Yuqing Wang

Abstract

In a recent study by Wang et al. (2021a) that introduced a dynamical efficiency to the intensification potential of a tropical cyclone (TC) system, a simplified energetically based dynamical system (EBDS) model was shown to be able to capture the intensity-dependence of TC potential intensification rate (PIR) in both idealized numerical simulations and observations. Although the EBDS model can capture the intensity-dependence of TC intensification as in observations, a detailed evaluation has not yet been done. This study provides an evaluation of the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based on the best-track data for TCs over the North Atlantic, central, eastern and western North Pacific during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can capture basic features of the observed PIR reasonably well. The TC PIR in the best-track data increases with increasing relative TC intensity (intensity normalized by its corresponding maximum potential intensity–MPI) and reaches a maximum at an intermediate relative intensity around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative intensity increases with the increasing MPI and thus increasing sea surface temperature, which is also consistent with the theoretical PIR implied by the EBDS model. In addition, future directions to include environmental effects and make the EBDS model applicable to predict intensity change of real TCs are also discussed.

Restricted access
Rebecca C. Evans and David S. Nolan

Abstract

The properties of diurnal variability in tropical cyclones (TCs) and the mechanisms behind them remain an intriguing aspect of TC research. This study provides a comprehensive analysis of diurnal variability in two simulations of TCs to explore these mechanisms. One simulation is a well known Hurricane Nature Run, which is a realistic simulation of a TC produced using the Weather Research and Forecasting model (WRF). The other simulation is a realistic simulation produced using WRF of Hurricane Florence (2018) using hourly ERA5 reanalysis data as input. Empirical orthogonal functions and Fourier filtering are used to analyze diurnal variability in the TCs. In both simulations a diurnal squall forms at sunrise in the inner core and propagates radially outwards and intensifies until midday. At midday the upper-level outflow strengthens, surface inflow weakens, and the cirrus canopy reaches its maximum height and radial extent. At sunset and overnight, the surface inflow is stronger, and convection inside the RMW peaks. Therefore, two diurnal cycles of convection exist in the TCs with different phases of maxima: eyewall convection at sunset and at night, and rainband convection in the early morning. This study finds that the diurnal pulse in the cirrus canopy is not advectively-driven, nor can it be attributed to weaker inertial stability at night; rather, the results indicate direct solar heating as a mechanism for cirrus canopy lifting and enhanced daytime outflow. These results show a strong diurnal modulation of tropical cyclone structure, and are consistent with other recent observational and modeling studies of the TC diurnal cycle.

Restricted access
Victor Avsarkisov, Erich Becker, and Toralf Renkwitz

Abstract

We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale (Lb) and the Ozmidov scale (Lo) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the sub-grid scale parameterization. The model allows us to derive the turbulent root-mean-square (RMS) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave breaking phenomenon. The turbulent RMS velocity results from the model agree well with Full Correlation Analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in masoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities supports the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.

Restricted access
R. Paul Lawson, Roelof Bruintjes, Sarah Woods, and Colin Gurganus

Abstract

Understanding ice development in Cumulus Congestus (CuCg) clouds, which are ubiquitous globally, is critical for improving our knowledge of cloud physics, cloud resolution and climate prediction models. Results presented here are representative of data collected in 1,008 penetrations of moderate to strong updrafts in CuCg clouds by five research aircraft in six geographic locations. The results show that CuCg with warm (> ∼20°C) cloud base temperatures, such as in tropical marine environments, experience a strong collision-coalescence process. Development of coalescence is also correlated with drop effective radius > ∼12 to 14 µm in diameter. Increasing the cloud-base drop concentration with diameters from 15 to 35 µm and decreasing the drop concentration < 15 µm appears to enhance coalescence. While the boundary-layer aerosol population is not a determinate factor in development of coalescence in tropical marine environments, its impact on coalescence is not yet fully determined. Some supercooled large drops generated via coalescence fracture when freezing, producing a secondary ice process (SIP) with production of copious small ice particles that naturally seed the cloud. The SIP produces an avalanche effect, freezing the majority of supercooled liquid water before fresh updrafts reach the −16°C level. Conversely, CuCg with cloud base temperatures ≤ ∼8°C develop significant concentrations of ice particles at colder temperatures, so that small supercooled water drops are lofted to higher elevations before freezing. Recirculation of ice in downdrafts at the edges of updrafts appears to be the primary mechanism for development of precipitation in CuCg with colder cloud base temperatures.

Restricted access
Christopher G. Kruse, M. Joan Alexander, Lars Hoffmann, Annelize van Niekerk, Inna Polichtchouk, Julio T. Bacmeister, Laura Holt, Riwal Plougonven, Petr Šácha, Corwin Wright, Kaoru Sato, Ryosuke Shibuya, Sonja Gisinger, Manfred Ern, Catrin I. Meyer, and Olaf Stein

Abstract

Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave- (MW) resolving hind-casts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. TheWeather Research and Forecasting (WRF) model and the Met Office Unified Model (UM) were both configured with a Δx = 3 km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric InfraRed Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer.

All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3 km resolution, small-scale MWs are under-resolved and/or over-diffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈ 6 time smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e. uv¯) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.

Restricted access