Browse

You are looking at 1 - 10 of 17 items for :

  • U.S. CLIVAR Drought x
  • Refine by Access: All Content x
Clear All
Renu Joseph
and
Ning Zeng

Abstract

Major volcanic events with a high loading of stratospheric aerosol have long been known to cause cooling, but their impact on precipitation has only recently been emphasized, especially as an analog for potential geoengineering of climate. Here, the authors use a coupled atmosphere–ocean–land–vegetation model in conjunction with observations to study the effects of volcanic aerosol on the tropical and subtropical precipitation. The small internal variability in the model enables a clear identification of the volcanic impact, which is broadly supported by observations, especially for the large Pinatubo event. Area averaged rainfall over land between 40°S and 40°N decreases by about 0.15 mm day−1, 4–5 months after the height of a major volcanic aerosol loading, such as from Pinatubo, with regional changes as large as 0.6 mm day−1 or higher, such as over the Amazon and equatorial Africa. These anomalies migrate seasonally, following the movement of monsoon rainfall. This is because the low heat capacity of the land leads to rapid response of rainfall there, owing to the energy imbalance caused by volcanic aerosol cooling. In contrast, precipitation response over the ocean is much slower and considerably damped because of the much larger heat capacity. In addition, the difference in heat capacities over land and over ocean leads to an anomalous land–sea thermal contrast, which could further contribute to the reduction of rainfall over land. The volcano-induced drought may have significant impact on the ecosystem, agriculture, and the carbon cycle, especially in the monsoon regions.

Full access
Alfredo Ruiz-Barradas
and
Sumant Nigam

Abstract

The present work assesses spring and summer precipitation over North America as well as summer precipitation variability over the central United States and its SST links in simulations of the twentieth-century climate and projections of the twenty-first- and twenty-second-century climates for the A1B scenario.

The observed spatial structure of spring and summer precipitation poses a challenge for models, particularly over the western and central United States. Tendencies in spring precipitation in the twenty-first century agree with the observed ones at the end of the twentieth century over a wetter north-central and a drier southwestern United States, and a drier southeastern Mexico. Projected wetter springs over the Great Plains in the twenty-first and twenty-second centuries are associated with an increase in the number of extreme springs. In contrast, projected summer tendencies have demonstrated little consistency. The associated observed changes in SSTs bear the global warming footprint, which is not well captured in the twentieth-century climate simulations.

Precipitation variability over the Great Plains presents a coherent picture in spring but not in summer. Models project an increase in springtime precipitation variability owing to an increased number of extreme springs. The number of extreme droughty (pluvial) events during the spring–fall part of the year is under(over)estimated in the twentieth century without consistent projections.

Summer precipitation variability over the Great Plains is linked to SSTs over the Pacific and Atlantic Oceans, with no apparent ENSO link in spite of the exaggerated variability in the equatorial Pacific in climate simulations; this has been identified already in observations and atmospheric models forced with historical SSTs. This link is concealed due to the increased warming in the twenty-first century. Deficiencies in land surface–atmosphere interactions and global teleconnections in the climate models prevent them from a better portrayal of summer precipitation variability in the central United States.

Full access
Yochanan Kushnir
,
Richard Seager
,
Mingfang Ting
,
Naomi Naik
, and
Jennifer Nakamura

Abstract

The dynamical mechanisms associated with the impact of year-to-year variability in tropical North Atlantic (TNA) sea surface temperatures (SSTs) on North American precipitation, during the cold and warm halves of the hydrological year (October–September) are examined. Observations indicate that during both seasons warmer-than-normal TNA SSTs are associated with a reduction of precipitation over North America, mainly west of ∼90°W, and that the effect can be up to 30% of the year-to-year seasonal precipitation RMS variability. This finding confirms earlier studies with observations and models. During the cold season (October–March) the North American precipitation variability associated with TNA fluctuations is considerably weaker than its association with ENSO. During the warm season (April–September), however, the Atlantic influence, per one standard deviation of SST anomalies, is larger than that of ENSO.

The observed association between TNA SST anomalies and global and North American precipitation and sea level pressure variability is compared with that found in the output of an atmospheric general circulation model (AGCM) forced with observed SST variability, both globally and in the tropical Atlantic alone. The similarity between model output and observations suggests that TNA SST variability is causal. The mechanisms of the “upstream” influence of the Atlantic on North American precipitation are seasonally dependent. In the warm season, warmer-than-normal TNA SSTs induce a local increase in atmospheric convection. This leads to a weakening of the North Atlantic subtropical anticyclone and a reduction in precipitation over the United States and northern Mexico, associated with the anomalous southward flow there. In the cold season, a response similar to the warm season over the subtropical Atlantic is identified, but there is also a concomitant suppression of convection over the equatorial Pacific, which leads to a weakening of the Aleutian low and subsidence over western North America, similar to the impact of La Niña although weaker in amplitude. The impact of TNA SST on tropical convection and the extratropical circulation is examined by a set of idealized experiments with a linear general circulation model forced with the tropical heating field derived from the full AGCM.

Full access
Philip J. Pegion
and
Arun Kumar

Abstract

A set of idealized global model experiments was performed by several modeling centers as part of the Drought Working Group of the U.S. Climate Variability and Predictability component of the World Climate Research Programme (CLIVAR). The purpose of the experiments was to assess the role of the leading modes of sea surface temperature (SST) variability on the climate over the continents, with particular emphasis on the influence of SSTs on surface climate variability and droughts over the United States. An analysis based on several models gives more creditability to the results since it relies on the assessment of impacts that are robust across different models.

Coordinated atmospheric general circulation model (AGCM) simulations forced with three modes of SST variability were analyzed. The results show that the SST-forced precipitation variability over the central United States is dominated by the SST mode with maximum loading in the central Pacific Ocean. The SST mode with loading in the Atlantic Ocean, and a mode that is dominated by trends in SSTs, lead to a smaller response.

Based on the response to the idealized SSTs, the precipitation response for the twentieth century was also reconstructed. A comparison with the Atmospheric Model Intercomparison Project (AMIP) simulations forced with the observed SSTs illustrates that the reconstructed precipitation variability was similar to the one in the AMIP simulations, further supporting the conclusion that the SST modes identified in the present analysis play a dominant role in the precipitation variability over the United States. One notable exception is the Dust Bowl of the 1930s, and further analysis regarding this major climate extreme is discussed.

Full access
Antonietta Capotondi
and
Michael A. Alexander

Abstract

Multicentury preindustrial control simulations from six of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models are used to examine the relationship between low-frequency precipitation variations in the Great Plains (GP) region of the United States and global sea surface temperatures (SSTs). This study builds on previous work performed with atmospheric models forced by observed SSTs during the twentieth century and extends it to a coupled model context and longer time series. The climate models used in this study reproduce the precipitation climatology over the United States reasonably well, with maximum precipitation occurring in early summer, as observed. The modeled precipitation time series exhibit negative “decadal” anomalies, identified using a 5-yr running mean, of amplitude comparable to that of the twentieth-century droughts. It is found that low-frequency anomalies over the GP are part of a large-scale pattern of precipitation variations, characterized by anomalies of the same sign as in the GP region over Europe and southern South America and anomalies of opposite sign over northern South America, India, and Australia. The large-scale pattern of the precipitation anomalies is associated with global-scale atmospheric circulation changes; during wet periods in the GP, geopotential heights are raised in the tropics and high latitudes and lowered in the midlatitudes in most models, with the midlatitude jets displaced toward the equator in both hemispheres. Statistically significant correlations are found between the decadal precipitation anomalies in the GP region and tropical Pacific SSTs in all the models. The influence of other oceans (Indian and tropical and North Atlantic), which previous studies have identified as potentially important, appears to be model dependent.

Full access
Alfredo Ruiz-Barradas
and
Sumant Nigam

Abstract

The present study assesses the potential of the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group (DWG) models in simulating interannual precipitation variability over North America, especially the Great Plains. It also provides targets for the idealized DWG model experiments investigating drought origin. The century-long Atmospheric Model Intercomparison Project (AMIP) simulations produced by version 3.5 of NCAR’s Community Atmosphere Model (CAM3.5), the Lamont-Doherty Earth Observatory’s Community Climate Model (CCM3), and NASA’s Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric models are analyzed; CCM3 and NSIPP-1 models have 16- and 14-ensemble simulations, respectively, while CAM3.5 only has 1.

The standard deviation of summer precipitation is different in AMIP simulations. The maximum over the central United States seen in observations is placed farther to the west in simulations. Over the central plains the models exhibit modest skill in simulating low-frequency precipitation variability, a Palmer drought severity index proxy. The presence of a linear trend increases correlations in the period 1950–99 when compared with those for the whole century. The SST links of the Great Plains drought index have features in common with observations over both the Pacific and Atlantic Oceans.

Interestingly, summer-to-fall precipitation regressions of the warm Trend, cold Pacific, and warm Atlantic modes of annual mean SST variability (used in forcing the DWG idealized model experiments) tend to dry the southwestern, midwestern, and southeastern regions of the United States in the observations and, to a lesser extent, in the simulations.

The similarity of the idealized SST-forced droughts in DWG modeling experiments with AMIP precipitation regressions of the corresponding SST principal components, evident especially in the case of the cold Pacific pattern, suggests that the routinely conducted AMIP simulations could have served as an effective proxy for the more elaborated suite of DWG modeling experiments.

Full access
Rachel R. McCrary
and
David A. Randall

Abstract

Coupled global circulation models (CGCMs) have been widely used to explore potential future climate change. Before these climate projections can be trusted, the ability of the models to simulate present-day climate must be assessed. This study evaluates the ability of three CGCMs that participated in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change to simulate long-term drought over the Great Plains region with the same frequency and intensity as was observed during the twentieth century. The three models evaluated in this study are the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.0 (CM2.0); the National Centers for Atmospheric Research Community Climate System Model, version 3 (CCSM3); and third climate configuration of the Met Office Unified Model (HadCM3).

The models are shown to capture the broad features of the climatology of the Great Plains, with maximum precipitation occurring in early summer, as observed. However, all of the models overestimate annual precipitation rates. Also, in CCSM3, precipitation and evapotranspiration experience unrealistic decreases between the months of June and August.

Long-term droughts are found in each simulation of the twentieth century that are comparable in duration, severity, and spatial extent as has been observed. However, the processes found to be associated with simulated long-term droughts vary among the models. In both CM2.0 and HadCM3, low-frequency variations in Great Plains precipitation are found to correspond with low-frequency variations in tropical Pacific SSTs. In CCSM3, on the other hand, there appears to be no significant correlation between tropical Pacific SST variability and Great Plains precipitation. Strong land–atmosphere coupling in CCSM3 may explain the persistence of long-term droughts in this model.

Full access
Kerry H. Cook
and
Edward K. Vizy

Abstract

The easterly Caribbean low-level jet (CLLJ) is a prominent climate feature over the Intra-America Seas, and it is associated with much of the water vapor transport from the tropical Atlantic into the Caribbean Basin. In this study, the North American Regional Reanalysis (NARR) is analyzed to improve the understanding of the dynamics of the CLLJ and its relationship to regional rainfall variations.

Horizontal momentum balances are examined to understand how jet variations on both diurnal and seasonal time scales are controlled. The jet is geostrophic to the first order. Its previously documented semidiurnal cycle (with minima at about 0400 and 1600 LT) is caused by semidiurnal cycling of the meridional geopotential height gradient in association with changes in the westward extension of the North Atlantic subtropical high (NASH). A diurnal cycle is superimposed, associated with a meridional land–sea breeze (solenoidal circulation) onto the north coast of South America, so that the weakest jet velocities occur at 1600 LT. The CLLJ is present throughout the year, and it is known to vary in strength semiannually. Peak magnitudes in July are related to the seasonal cycle of the NASH, and a second maximum in February is caused by heating over northern South America. From May through September, zonal geopotential gradients associated with summer heating over Central America and Mexico induce meridional flow. The CLLJ splits into two branches, including a southerly branch that connects with the Great Plains low-level jet (GPLLJ) bringing moisture into the central United States. During the rest of the year, the flow remains essentially zonal across the Caribbean Basin and into the Pacific.

A strong (weak) CLLJ is associated with reduced (enhanced) rainfall over the Caribbean Sea throughout the year in the NARR. The relationship with precipitation over land depends on the season. Despite the fact that the southerly branch of the CLLJ feeds into the meridional GPLLJ in May through September, variations in the CLLJ strength during these months do not impact U.S. precipitation, because the CLLJ strength is varying in response to regional-scale forcing and not to changes in the large-scale circulation. During the cool season, there are statistically significant correlations between the CLLJ index and rainfall over the United States. When the CLLJ is strong, there is anomalous northward moisture transport across the Gulf of Mexico into the central United States and pronounced rainfall increases over Louisiana and Texas. A weak jet is associated with anomalous westerly flow across the southern Caribbean region and significantly reduced rainfall over the south-central United States.

No connection between the intensity of the CLLJ and drought over the central United States is found. There are only three drought summers in the NARR period (1980, 1988, and 2006), and the CLLJ was extremely weak in 1988 but not in 1980 or 2006.

Full access
Matías Méndez
and
Víctor Magaña

Abstract

Major prolonged droughts in Mexico during the twentieth century are mainly related to anomalous dry summers, such as those observed in the 1930s, the 1950s, or the 1990s. Droughts in northern Mexico frequently coincide with anomalously wet conditions over Mesoamerica (i.e., southern Mexico and Central America), and vice versa, displaying a dominant “seesaw” structure in persistent precipitation anomalies, mostly in relation to tropical sea surface temperature (SST) anomalies. A warmer North Atlantic Ocean, expressed as a positive phase of Atlantic multidecadal oscillation (AMO), is related to the occurrence of major droughts in North America associated with weaker-than-normal moisture flux into northern Mexico. Drought over northern Mexico may also be related to changes in transient activity in the Caribbean Sea. During the negative phase of the Pacific decadal oscillation (PDO), the Caribbean low-level jet (CLLJ) weakens and easterly wave (EW) activity increases, leading to more tropical convection over Mesoamerica and less moisture flux into northern Mexico. On the other hand, when EW activity is weak over the intra-Americas seas (IAS) (i.e., the Gulf of Mexico and the Caribbean Sea) because of a stronger-than-normal CLLJ, precipitation increases over northern Mexico. Therefore, the interaction between easterly waves and the trade winds over the IAS appears to be crucial to explain the spatial patterns of droughts that have affected Mexico. In addition, low-frequency modulators, such as AMO or PDO, may serve to explain the spatial patterns of severe prolonged droughts in Mexico during the nineteenth century.

Full access
Kirsten L. Findell
and
Thomas L. Delworth

Abstract

Climate model simulations run as part of the Climate Variability and Predictability (CLIVAR) Drought Working Group initiative were analyzed to determine the impact of three patterns of sea surface temperature (SST) anomalies on drought and pluvial frequency and intensity around the world. The three SST forcing patterns include a global pattern similar to the background warming trend, a pattern in the Pacific, and a pattern in the Atlantic. Five different global atmospheric models were forced by fixed SSTs to test the impact of these SST anomalies on droughts and pluvials relative to a climatologically forced control run.

The five models generally yield similar results in the locations of drought and pluvial frequency changes throughout the annual cycle in response to each given SST pattern. In all of the simulations, areas with an increase in the mean drought (pluvial) conditions tend to also show an increase in the frequency of drought (pluvial) events. Additionally, areas with more frequent extreme events also tend to show higher intensity extremes. The cold Pacific anomaly increases drought occurrence in the United States and southern South America and increases pluvials in Central America and northern and central South America. The cold Atlantic anomaly increases drought occurrence in southern Central America, northern South America, and central Africa and increases pluvials in central South America. The warm Pacific and Atlantic anomalies generally lead to reversals of the drought and pluvial increases described with the corresponding cold anomalies. More modest impacts are seen in other parts of the world. The impact of the trend pattern is generally more modest than that of the two other anomaly patterns.

Full access