Browse

You are looking at 1 - 10 of 11,436 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Kevin Schwarzwald
,
Richard Seager
,
Mingfang Ting
, and
Alessandra Giannini

Abstract

The societies of the coastal regions of the Greater Horn of Africa (GHA) experience two distinct rainy seasons: the generally wetter “long” rains in the boreal spring and the generally drier “short” rains in the boreal fall. The GHA rainfall climatology is unique for its latitude in both its aridity and for the dynamical differences between its two rainy seasons. This study explains the drivers of the rainy seasons through the climatology of moist static stability, estimated as the difference between surface moist static energy hs and midtropospheric saturation moist static energy h * . In areas and at times when this difference, h s h * , is higher, rainfall is more frequent and more intense. However, even during the rainy seasons, h s h * < 0 on average and the atmosphere remains largely stable, in line with the GHA’s aridity. The seasonal cycle of h s h * , to which the unique seasonal cycles of surface humidity, surface temperature, and midtropospheric temperature all contribute, helps explain the double-peaked nature of the regional hydroclimate. Despite tropospheric temperature being relatively uniform in the tropics, even small changes in h * can have substantial impacts on instability; for example, during the short rains, the annual minimum in GHA h * lowers the threshold for convection and allows for instability despite surface humidity anomalies being relatively weak. This h s h * framework can help identify the drivers of interannual variability in GHA mean rainfall or diagnose the origin of biases in climate model simulations of the regional climate.

Open access
Jonah K. Shaw
and
Jennifer E. Kay

Abstract

Most observed patterns of recent Arctic surface warming and sea ice loss lie outside of unforced internal climate variability. In contrast, human influence on related changes in outgoing longwave radiation has not been assessed. Outgoing longwave radiation captures the flow of thermal energy from the surface through the atmosphere to space, making it an essential indicator of Arctic change. Furthermore, satellites have measured pan-Arctic radiation for two decades while surface temperature observations remain spatially and temporally sparse. Here, two climate model initial-condition large ensembles and satellite observations are used to investigate when and why twenty-first-century Arctic outgoing longwave radiation changes emerge from unforced internal climate variability. Observationally, outgoing longwave radiation changes from 2001 to 2021 are within the range of unforced internal variability for all months except October. The model-predicted timing of Arctic longwave radiation emergence varies throughout the year. Specifically, fall emergence occurs a decade earlier than spring emergence. These large emergence timing differences result from seasonally dependent sea ice loss and surface warming. The atmosphere and clouds then widen these seasonal differences by delaying emergence more in the spring and winter than in the fall. Finally, comparison of the two ensembles shows that more sea ice and a more transparent atmosphere during the melt season led to an earlier emergence of forced longwave radiation changes. Overall, these findings demonstrate that attributing changes in Arctic outgoing longwave radiation to human influence requires understanding the seasonality of both forced change and internal climate variability.

Open access
J. K. Eischeid
,
M. P. Hoerling
,
X.-W. Quan
,
A. Kumar
,
J. Barsugli
,
Z. M. Labe
,
K. E. Kunkel
,
C. J. Schreck III
,
D. R. Easterling
,
T. Zhang
,
J. Uehling
, and
X. Zhang

Abstract

A cooling trend in summer (May–August) daytime temperatures since the mid-twentieth century over the central United States contrasts with strong warming of the western and eastern United States. Prior studies based on data through 1999 suggested that this so-called warming hole arose mainly from internal climate variability and thus would likely disappear. Yet it has prevailed for two more decades, despite accelerating global warming, compelling reexamination of causes that in addition to natural variability could include anthropogenic aerosol–induced cooling, hydrologic cycle intensification by greenhouse gas increases, and land use change impacts. Here we present evidence for the critical importance of hydrologic cycle change resulting from ocean–atmosphere drivers. Observational analysis reveals that the warming hole’s persistence is consistent with unusually high summertime rainfall over the region during the first decades of the twenty-first century. Comparative analysis of large ensembles from four different climate models demonstrates that rainfall trends since the mid-twentieth century as large as observed can arise (although with low probability) via internal atmospheric variability alone, which induce warming-hole-like patterns over the central United States. In addition, atmosphere-only model experiments reveal that observed sea surface temperature changes since the mid-twentieth century have also favored central U.S cool/wet conditions during the early twenty-first century. We argue that this latter effect is symptomatic of external radiative forcing influences, which, via constraints on ocean warming patterns, have likewise contributed to persistence of the U.S. warming hole in roughly equal proportion to contributions by internal variability. These results have important ramifications for attribution of extreme events and predicting risks of record-breaking heat waves in the region.

Significance Statement

Our paper makes a significant contribution to analysis of a cooling trend in summer (May–August) daytime temperatures since the mid-twentieth century over the central United States, contrasting with strong warming over the remainder of the United States and having important ramifications for assigning cause to and predicting record-breaking heat waves in the region. Observations and model simulations reveal the critical importance of hydrologic cycle change resulting from ocean–atmosphere impacts. Precipitation has increased substantially over the region as a result of atmospheric circulation trends consisting of generally lower pressure and cooler air advection into the region. The persistence of this pattern of increased rainfall/lower temperatures is likely due to near-equal contributions of external forcing (climate change) and internal climate variability.

Open access
Yuhao Liu
,
Shoude Guan
,
I.-I. Lin
,
Wei Mei
,
Fei-Fei Jin
,
Mengya Huang
,
Yihan Zhang
,
Wei Zhao
, and
Jiwei Tian

Abstract

The effect of tropical cyclone (TC) size on TC-induced sea surface temperature (SST) cooling and subsequent TC intensification is an intriguing issue without much exploration. Via compositing satellite-observed SST over the western North Pacific during 2004–19, this study systematically examined the effect of storm size on the magnitude, spatial extension, and temporal evolution of TC-induced SST anomalies (SSTA). Consequential influence on TC intensification is also explored. Among the various TC wind radii, SSTA are found to be most sensitive to the 34-kt wind radius (R34) (1 kt ≈ 0.51 m s−1). Generally, large TCs generate stronger and more widespread SSTA than small TCs (for category 1–2 TCs, R34: ∼270 vs 160 km; SSTA: −1.7° vs −0.9°C). Despite the same effect on prolonging residence time of TC winds, the effect of doubling R34 on SSTA is more profound than halving translation speed, due to more wind energy input into the upper ocean. Also differing from translation speed, storm size has a rather modest effect on the rightward shift and timing of maximum cooling. This study further demonstrates that storm size regulates TC intensification through an oceanic pathway: large TCs tend to induce stronger SST cooling and are exposed to the cooling for a longer time, both of which reduce the ocean’s enthalpy supply and thereby diminish TC intensification. For larger TCs experiencing stronger SST cooling, the probability of rapid intensification is half of smaller TCs. The presented results suggest that accurately specifying storm size should lead to improved cooling effect estimation and TC intensity prediction.

Significance Statement

Storm size has long been speculated to play a crucial role in modulating the TC self-induced sea surface temperature (SST) cooling and thus potentially influence TC intensification through ocean negative feedback. Nevertheless, systematic analysis is lacking. Here we show that larger TCs tend to generate stronger SST cooling and have longer exposure to the cooling effect, both of which enhance the strength of the negative feedback. Consequently, larger TCs undergo weaker intensification and are less likely to experience rapid intensification than smaller TCs. These results demonstrate that storm size can influence TC intensification not only from the atmospheric pathway, but also via the oceanic pathway. Accurate characterization of this oceanic pathway in coupled models is important to accurately forecast TC intensity.

Restricted access
Graham P. Taylor
,
Paul C. Loikith
,
Hugo Kyo Lee
,
Benjamin Lintner
, and
Christina M. Aragon

Abstract

Climate model projections of atmospheric circulation patterns, their frequency, and associated temperature and precipitation anomalies under a high-end global warming scenario are assessed over the Pacific Northwest of North America for the final three decades of the twenty-first century. Model simulations are from phase 6 of the Coupled Model Intercomparison Project (CMIP6) and circulation patterns are identified using the self-organizing maps (SOMs) approach, applied to 500-hPa geopotential height (Z500) anomalies. Overall, the range of projected circulation patterns is similar to that in the current climate, especially in winter, whereas in summer the models project a general reduction in the magnitude of Z500 anomalies. Significant changes in pattern frequencies are also projected in summer, with an overall decrease in the frequency of patterns with large Z500 anomalies. In winter, patterns historically associated with anomalously cold weather in northern latitudes are projected to warm the most, and in summer the largest temperature increases are projected over inland areas. Precipitation is found to increase across all seasons and most SOM patterns. However, some summer patterns that are associated with above-average precipitation in the current climate are projected to become significantly drier by the end of the century.

Significance Statement

This paper uses a novel method to analyze projections of large-scale atmospheric circulation over the Pacific Northwest of North America, reducing the uncertainty of changes to the circulation patterns over the region under a high-emissions scenario of global warming.

Restricted access
Chanud N. Yasanayake
,
Benjamin F. Zaitchik
, and
Anand Gnanadesikan

Abstract

For the tropical country of Sri Lanka, subseasonal variability in precipitation is both ecologically and societally relevant, influencing agricultural yields, natural hazard risk, energy production, and disease incidence. The primary driver of this subseasonal precipitation variability is the Madden–Julian oscillation (MJO). Here we investigate this influence on Sri Lankan precipitation across seasons, describing MJO-associated precipitation patterns and exploring the potential for MJO-informed subseasonal forecasts. We do so using 40-yr satellite-derived records of precipitation with high spatial resolution (from CHIRPS v2.0) and related meteorological and atmospheric fields (from ERA5 and MERRA-2). We find a direct MJO influence on precipitation corresponding to propagation of the MJO’s convectively active region and suppressed region near Sri Lanka, with the strength and spatial patterns of this influence differing across seasons. There are particularly strong impacts in the second intermonsoon (SIM; October–November) and southwest monsoon (SWM; May–September) seasons. During SIM the impacts are island-wide, but strongest in the northeast. During the SWM the absolute impacts are localized to the southwest, but the relative impacts (i.e., relative to precipitation climatology) are fairly uniform across the island. Moreover, we find significant associations between MJO phase and Sri Lankan precipitation at time scales of up to several weeks. Notably, these associations are stronger when using the OLR-based MJO index (OMI) rather than the more commonly used real-time multivariate MJO index (RMM). While the MJO associations we describe here arise from a highly simplified forecasting scheme, they provide a foundation and impetus for developing a more complete, MJO-informed precipitation forecast method.

Significance Statement

Rainfall variability at the subseasonal (weeks–months) time scale is critical to societal well-being, given its fundamental importance for agriculture, flood risk, hydropower generation, and disease incidence. Our work describes how such rainfall variability in Sri Lanka is impacted by the Madden–Julian oscillation, in which a region of enhanced rainfall and cloudiness, paired with a region of decreased rainfall and cloudiness, circles the globe every 30–60 days. Our results suggest that its influence on Sri Lankan rainfall may be strong enough that incorporating knowledge of the Madden–Julian oscillation into forecasts can improve the accuracy of rainfall prediction for Sri Lanka. Future work should develop a more comprehensive forecast method to assess viability in real-world forecasting scenarios.

Open access
Daniela Granato-Souza
and
David W. Stahle

Abstract

Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century.

Significance Statement

Proxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.

Open access
Mengqi Zhang
and
Jianqi Sun

Abstract

This study reveals that South China precipitation (SCP) anomalies tend to persist well from winter to the following spring after the late 1990s, favoring long-lasting drought or flood events over South China. Mechanism analysis indicates that the interdecadal changes in El Niño–Southern Oscillation (ENSO) and the preceding November central Asian snow cover could contribute to the increased persistence of winter-to-spring SCP anomalies. ENSO has a stable impact on winter SCP, whereas its impact on spring SCP is significantly enhanced after the late 1990s. With a weakened intensity and faster decay rate in the recent two decades, the ENSO-related spring SST anomalies over the tropical Pacific are relatively weaker, inducing a weakened and more southward-located western North Pacific anticyclone. This further leads to an interdecadal migration of the spring rainfall belt anomaly, consequently favoring the persistence of winter-to-spring SCP anomalies after the late 1990s. Additionally, the impacts of November central Asian snow cover on winter and spring SCP are both strengthened after the late 1990s. In the most recent two decades, the snow-cover-related cooling effect has become stronger, which induces winter cyclonic anomalies over Lake Baikal, favoring increased winter SCP. In addition, increased snow cover excites upward-propagating waves from the troposphere to the stratosphere, consequently weakening the stratospheric polar vortex. In spring, the stratospheric polar vortex signals propagate downward and result in a negative Arctic Oscillation in the troposphere, favoring more spring SCP. Therefore, central Asian snow cover is also conductive to the persistence of winter-to-spring SCP anomalies after the late 1990s.

Restricted access
Lun Dai
,
Tat Fan Cheng
,
Bin Wang
, and
Mengqian Lu

Abstract

The Indian monsoon is of utmost concern to agriculture, the economy, and the livelihoods of billions in South Asia. However, little attention has been paid to the possibility of distinct subseasonal episodes phase-locked in the Indian monsoon annual cycle. This study addresses this gap by utilizing the self-organizing map (SOM) method to objectively classify six distinct subseasonal stages based on the 850-hPa wind fields. Each subseasonal stage ranges from 23 to 90 days. The Indian summer monsoon (ISM) consists of three substages, the ISM-onset, ISM-peak, and ISM-withdrawal, altogether contributing to 82% of the annual precipitation. The three substages signify the rapid northward advance, dominance, and gradual southward retreat of southwesterlies from mid-May to early October. The winter monsoon also comprises three substages (fall, winter, and spring), distinguishable by the latitude of the Arabian Sea high pressure ridge and hydrological conditions. This study proposes two compact indices based on zonal winds in the northern and southern Arabian Sea to measure the winter and summer monsoons, respectively. These indices capture the development and turnabouts of the six SOM-derived stages and can be used for subseasonal monsoon monitoring and forecasts. The spring and the ISM-onset episodes are highly susceptible to compound hazards of droughts and heatwaves, while the greatest flood risk occurs during the ISM-peak stage. The fall stage heralds the peak season for tropical storms over the Arabian Sea and the Bay of Bengal. The annual start and end dates of the ISM-peak are highly correlated (0.6–0.8) with the criteria-based dates proposed previously, supporting the delineation of the Indian monsoon subseasonal features.

Significance Statement

This research explores the existence of subseasonal features in the Indian monsoon annual cycle. Through the use of machine learning, we discover that the Indian summer monsoon and winter monsoon each consist of three substages. These substages’ evolution can be measured by two compact indices proposed herein, which can aid in subseasonal monsoon monitoring and forecasts in South Asia. Pertaining to hazard adaptations, this work pinpoints the subseasonal episodes most susceptible to droughts, heatwaves, floods, and tropical storms. High correlations are obtained when validating the substages’ yearly start and end dates against those documented in the existing literature, offering credibility to the subseasonal features of the Indian monsoon.

Open access
Wenzheng Nie
,
Mingqi Li
,
Guofu Deng
, and
Xuemei Shao

Abstract

In this paper, we present a late summer (August–September) temperature reconstruction over the period 1792–2020 based on a tree-ring maximum latewood density (MXD) chronology for the southern Tibetan Plateau (TP). The reconstruction explained 66.2% of the variance in the instrumental temperature records during the calibration period 1960–2020 and captured the warming trend since the 1960s, which would support the current warming on the TP. In addition, a warming hiatus existed during 2001–12 and the last 20 years (2000–20) were the warmest period in the past two centuries. The reconstruction matched other MXD- and mean latewood density (LWD)-based late summer temperature reconstructions from neighboring regions, and fluctuated in synchrony with the Climatic Research Unit (CRU) Northern Hemisphere land surface temperature during 1850–2020. Multitaper method analysis and wavelet analysis revealed significant periodicities of 2–3, 20–30, and 40–60 years in the reconstructed series. Our reconstructed series was very consistent and highly correlated with the Atlantic multidecadal oscillation (AMO). During the warm phase of the AMO, higher pressure and divergent horizontal winds over the TP contribute to warmer summers in the region. In addition, we found that the southern TP experienced the lowest temperature and downward solar radiation in the second year following large volcanic eruptions. The decrease in downward solar radiation may be directly responsible for the occurrence of the lowest temperatures. The results indicate that the AMO and large volcanic eruptions were impacting factors on temperature in our study area.

Restricted access