Browse

You are looking at 1 - 10 of 6,884 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Zheen Zhang, Thomas Pohlmann, and Xueen Chen

Abstract

The characteristics and variability of intraseasonal internal coastal Kelvin waves (CKWs) along the Bay of Bengal (BoB) waveguide are investigated in the context of global warming by employing a regional ocean model. The analyzed period covers 120 years from 1980 to 2099, which includes the historical scenario and the RCP8.5 scenario. CKW information is successfully extracted from the temperature anomalies along the pycnocline by applying a newly developed methodology. The analysis reveals that intraseasonal CKWs in the BoB are highly in accordance with the intraseasonal zonal wind stress in the western equatorial Indian Ocean; the downwelling CKW lags the equatorial intraseasonal westerly winds, and the upwelling CKW lags the equatorial intraseasonal easterly winds. The CKWs significantly affect subsurface characteristics at the eastern BoB boundary, and the weakening of CKWs near the Irrawaddy Delta tip is a general feature occurring in the subsurface. With respect to the long-term scale, the occurrence of significant CKWs is predicted to be more frequent in the future under the high emissions pathway. Remarkably, the monthly climatology of CKWs varies over time; unlike the first two 30-yr analyzed periods, significant CKWs are predicted to mainly occur around August during the last two 30-yr periods due to the corresponding variabilities in the equatorial wind field, suggesting that the BoB characteristics may greatly deviate from the current climatological state.

Open access
Yeqiang Shu, Jinghong Wang, Huijie Xue, Rui Xin Huang, Ju Chen, Dongxiao Wang, Qiang Wang, Qiang Xie, and Weiqiang Wang

Abstract

Strong subinertial variability near a seamount at the Xisha Islands in the South China Sea was revealed by mooring observations from January 2017 to January 2018. The intraseasonal deep flows presented two significant frequency bands, with periods of 9–20 and 30–120 days, corresponding to topographic Rossby waves (TRWs) and deep eddies, respectively. The TRW and deep eddy signals explained approximately 60% of the kinetic energy of the deep subinertial currents. The TRWs at the Ma, Mb, and Mc moorings had 297, 262, and 274 m vertical trapping lengths, and ∼43, 38, and 55 km wavelengths, respectively. Deep eddies were independent from the upper layer, with the largest temperature anomaly being >0.4°C. The generation of the TRWs was induced by mesoscale perturbations in the upper layer. The interaction between the cyclonic–anticyclonic eddy pair and the seamount topography contributed to the generation of deep eddies. Owing to the potential vorticity conservation, the westward-propagating tilted interface across the eddy pair squeezed the deep-water column, thereby giving rise to negative vorticity west of the seamount. The strong front between the eddy pair induced a northward deep flow, thereby generating a strong horizontal velocity shear because of lateral friction and enhanced negative vorticity. Approximately 4 years of observations further confirmed the high occurrence of TRWs and deep eddies. TRWs and deep eddies might be crucial for deep mixing near rough topographies by transferring mesoscale energy to small scales.

Restricted access
Xiaohui Zhou, Tetsu Hara, Isaac Ginis, Eric D’Asaro, Je-Yuan Hsu, and Brandon G. Reichl

Abstract

The drag coefficient under tropical cyclones and its dependence on sea states are investigated by combining upper-ocean current observations [using electromagnetic autonomous profiling explorer (EM-APEX) floats deployed under five tropical cyclones] and a coupled ocean–wave (Modular Ocean Model 6–WAVEWATCH III) model. The estimated drag coefficient averaged over all storms is around 2–3 × 10−3 for wind speeds of 25–55 m s−1. While the drag coefficient weakly depends on wind speed in this wind speed range, it shows stronger dependence on sea states. In particular, it is significantly reduced when the misalignment angle between the dominant wave direction and the wind direction exceeds about 45°, a feature that is underestimated by current models of sea state–dependent drag coefficient. Since the misaligned swell is more common in the far front and in the left-front quadrant of the storm (in the Northern Hemisphere), the drag coefficient also tends to be lower in these areas and shows a distinct spatial distribution. Our results therefore support ongoing efforts to develop and implement sea state–dependent parameterizations of the drag coefficient in tropical cyclone conditions.

Open access
Erica Rosenblum, Julienne Stroeve, Sarah T. Gille, Camille Lique, Robert Fajber, L. Bruno Tremblay, Ryan Galley, Thiago Loureiro, David G. Barber, and Jennifer V. Lukovich

Abstract

The Arctic seasonal halocline impacts the exchange of heat, energy, and nutrients between the surface and the deeper ocean, and it is changing in response to Arctic sea ice melt over the past several decades. Here, we assess seasonal halocline formation in 1975 and 2006–12 by comparing daily, May–September, salinity profiles collected in the Canada Basin under sea ice. We evaluate differences between the two time periods using a one-dimensional (1D) bulk model to quantify differences in freshwater input and vertical mixing. The 1D metrics indicate that two separate factors contribute similarly to stronger stratification in 2006–12 relative to 1975: 1) larger surface freshwater input and 2) less vertical mixing of that freshwater. The larger freshwater input is mainly important in August–September, consistent with a longer melt season in recent years. The reduced vertical mixing is mainly important from June until mid-August, when similar levels of freshwater input in 1975 and 2006–12 are mixed over a different depth range, resulting in different stratification. These results imply that decadal changes to ice–ocean dynamics, in addition to freshwater input, significantly contribute to the stronger seasonal stratification in 2006–12 relative to 1975. These findings highlight the need for near-surface process studies to elucidate the impact of lateral processes and ice–ocean momentum exchange on vertical mixing. Moreover, the results may provide insight for improving the representation of decadal changes to Arctic upper-ocean stratification in climate models that do not capture decadal changes to vertical mixing.

Open access
Tong Bo and David K. Ralston

Abstract

Idealized numerical simulations were conducted to investigate the influence of channel curvature on estuarine stratification and mixing. Stratification is decreased and tidal energy dissipation is increased in sinuous estuaries compared to straight channel estuaries. We applied a vertical salinity variance budget to quantify the influence of straining and mixing on stratification. Secondary circulation due to the channel curvature is found to affect stratification in sinuous channels through both lateral straining and enhanced vertical mixing. Alternating negative and positive lateral straining occur in meanders upstream and downstream of the bend apex, respectively, corresponding to the normal and reversed secondary circulation with curvature. The vertical mixing is locally enhanced in curved channels with the maximum mixing located upstream of the bend apex. Bend-scale bottom salinity fronts are generated near the inner bank upstream of the bend apex as a result of interaction between the secondary flow and stratification. Shear mixing at bottom fronts, instead of overturning mixing by the secondary circulation, provides the dominant mechanism for destruction of stratification. Channel curvature can also lead to increased drag, and using a Simpson number with this increased drag coefficient can relate the decrease in stratification with curvature to the broader estuarine parameter space.

Restricted access
Manita Chouksey, Carsten Eden, and Dirk Olbers

Abstract

The generation of internal gravity waves from an initially geostrophically balanced flow is diagnosed in nonhydrostatic numerical simulations of shear instabilities for varied dynamical regimes. A nonlinear decomposition method up to third order in the Rossby number (Ro) is used as the diagnostic tool for a consistent separation of the balanced and unbalanced motions in the presence of their nonlinear coupling. Wave emission is investigated in an Eady-like and a jet-like flow. For the jet-like case, geostrophic and ageostrophic unstable modes are used to initialize the flow in different simulations. Gravity wave emission is in general very weak over a range of values for Ro. At sufficiently high Ro, however, when the condition for symmetric instability is satisfied with negative values of local potential vorticity, significant wave emission is detected even at the lowest order. This is related to the occurrence of fast ageostrophic instability modes, generating a wide spectrum of waves. Thus, gravity waves are excited from the instability of the balanced mode to lowest order only if the condition of symmetric instability is satisfied and ageostrophic unstable modes obtain finite growth rates.

Significance Statement

We aim to understand the generation of internal gravity waves in the atmosphere and ocean from a flow field that is initially balanced, i.e., free from any internal gravity waves. To examine this process, we use simulations from idealized numerical models and nonlinear flow decomposition method to identify waves. Our results show that a prominent mechanism by which waves can be generated is related to symmetric or ageostrophic instabilities of the balanced flow possibly occurring during frontogenesis. This process can be a significant mechanism to dissipate the energy of the geostrophic flow in the ocean.

Restricted access
Giulio Passerotti, Luke G. Bennetts, Franz von Bock und Polach, Alberto Alberello, Otto Puolakka, Azam Dolatshah, Jaak Monbaliu, and Alessandro Toffoli

Abstract

Irregular, unidirectional surface water waves incident on model ice in an ice tank are used as a physical model of ocean surface wave interactions with sea ice. Results are given for an experiment consisting of three tests, starting with a continuous ice cover and in which the incident wave steepness increases between tests. The incident waves range from causing no breakup of the ice cover to breakup of the full length of ice cover. Temporal evolution of the ice edge, breaking front, and mean floe sizes are reported. Floe size distributions in the different tests are analyzed. The evolution of the wave spectrum with distance into the ice-covered water is analyzed in terms of changes of energy content, mean wave period, and spectral bandwidth relative to their incident counterparts, and pronounced differences are found between the tests. Further, an empirical attenuation coefficient is derived from the measurements and shown to have a power-law dependence on frequency comparable to that found in field measurements. Links between wave properties and ice breakup are discussed.

Restricted access
Yizhak Feliks, Hezi Gildor, and Nadav Mantel

Abstract

The intraseasonal oscillations (ISOs) in sea currents in the eastern Mediterranean Sea near the central coast of Israel were analyzed by examining the velocity components of the sea currents at different depths as measured by acoustic Doppler current profilers located at various depths between 0 and 675 m. The total period covered by the observations was from December 2016 to May 2018. Prominent intraseasonal oscillations, much stronger than tidal velocity components, were observed in the upper part of the sea, at 30–70 m. The amplitudes of these oscillations are between 4 and 10 cm s−1 and their periods are 7, 11, 22, and 34–36 days. The strongest oscillations are found in the boreal winter. The ISOs in the sea currents were apparently induced by corresponding oscillations found in atmospheric wind velocity over the eastern Mediterranean at the surface and at 500 and 250 hPa, as suggested by the high correlations, 0.6–0.9, between the wind velocity components of the oscillatory modes in the atmosphere and the velocity component of the oscillatory modes in the sea currents with similar periods. We propose that the source of the ISOs in the atmosphere over the eastern Mediterranean is the South Asian jet wave train. The track of this wave train passes over the eastern Mediterranean, and the periods of the ISOs in the wave train are in the same band as the oscillations found here. The wave train is equivalently barotropic and strongest in the upper troposphere. This property of the wave train can explain the high correlation found between the oscillatory modes of wind velocity at 250 or 500 hPa and those in the sea currents. In all the cases besides the 7-day oscillatory mode, the significant oscillatory modes found at 250 or 500 hPa are also significant in the velocity components of the surface wind.

Restricted access
Lorine Behr, Niklas Luther, Simon A. Josey, Jürg Luterbacher, Sebastian Wagner, and Elena Xoplaki

Abstract

Accurate representation of the Atlantic–Mediterranean exchange in climate models is important for a reliable simulation of the circulation in the North Atlantic Ocean. We evaluate the performance of 10 global climate models in representing Mediterranean Overflow Water (MOW) over the recent period 1986–2005 by using various performance metrics. The metrics are based on the representation of the climatological mean state and the spatiotemporal variability of temperature, salinity, and volume transports. On the basis of analyses and observations, we perform a model ranking by calculating absolute, relative, and total relative errors Ej over each performance metric and model. The majority of models simulate at least six metrics well. The equilibrium depth of the MOW, the mean Atlantic–Mediterranean exchange flow, and the dominant pattern of the MOW are represented reasonably well by most of the models. Of those models considered, MPI-ESM-MR, MPI-ESM-LR, CSIRO Mk3.6.0, and MRI-CGCM3 provide the best MOW representation (Ej = 0.14, 0.19, 0.19, and 0.25, respectively). They are thus likely to be the most suitable choices for studies of MOW-dependent processes. However, the models experience salinity, temperature, and transport biases and do not represent temporal variability accurately. The implications of our results for future model analysis of the Mediterranean Sea overflow are discussed.

Restricted access
Qing Qin, Zhaomin Wang, Chengyan Liu, and Chen Cheng

Abstract

Extensive studies have addressed the characteristics and mechanisms of open-ocean polynyas in the Weddell and Cosmonaut Seas. Here, we show that more persistent open-ocean polynyas occur in the Cooperation Sea (CS) (60°–90°E), a sector of the Southern Ocean off the Prydz Bay continental shelf, between 2002 and 2019. Polynyas are formed annually mainly within the 62°–65°S band, as identified by sea ice concentrations less than 0.7. The polynyas usually began to emerge in April and expanded to large sizes during July–October, with sizes often larger than those of the Maud Rise polynya in 2017. The annual maximum size of polynyas ranged from 115.3 × 103 km2 in 2013 to 312.4 × 103 km2 in 2010, with an average value of 188.9 × 103 km2. The Antarctic Circumpolar Current (ACC) travels closer to the continental shelf and brings the upper circumpolar deep water to much higher latitudes in the CS than in most other sectors; cyclonic ocean circulations often develop between the ACC and the Antarctic Slope Current, with many of them being associated with local topographic features and dense water cascading. These oceanic preconditions, along with cyclonic wind forcing in the Antarctic Divergence zone, generated polynyas in the CS. These findings offer a more complete circumpolar view of open-ocean polynyas in the Southern Ocean and have implications for physical, biological, and biogeochemical studies of the Southern Ocean. Future efforts should be particularly devoted to more extensively observing the ocean circulation to understand the variability of open-ocean polynyas in the CS.

Significance Statement

An open-ocean polynya is an offshore area of open water or low sea ice cover surrounded by pack ice. Open-ocean polynyas are important for driving the physical, biogeochemical, and biological processes in the Southern Ocean. Extensive studies have addressed the characteristics and mechanisms of open-ocean polynyas in the Weddell and Cosmonaut Seas. The purpose of this study is to document the existence of more persistent open-ocean polynyas in the Cooperation Sea (60°–90°E) and explore the atmospheric and oceanic forcing mechanisms responsible for the formation of the open-ocean polynyas. Our results would offer a more complete circumpolar view of open-ocean polynyas in the Southern Ocean and have implications for physical, biological, and biogeochemical studies of the Southern Ocean.

Open access