Browse

You are looking at 1 - 10 of 42 items for :

  • Years of the Maritime Continent x
  • Refine by Access: All Content x
Clear All
Joshua Chun Kwang Lee, Anurag Dipankar, and Xiang-Yu Huang

Abstract

The diurnal cycle is the most prominent mode of rainfall variability in the Tropics, governed mainly by the strong solar heating and land-sea interactions which trigger convection. Over the western Maritime Continent, complex orographic and coastal effects can also play an important role. Weather and climate models often struggle to represent these physical processes, resulting in substantial model biases in simulations over the region. For numerical weather prediction, these biases manifest themselves in the initial conditions, leading to phase and amplitude errors in the diurnal cycle of precipitation. Using a tropical convective-scale data assimilation system, we assimilate 3-hourly radiosonde data from the pilot field campaign of the Years of Maritime Continent, in addition to existing available observations, to diagnose the model biases and assess the relative impacts of the additional wind, temperature and moisture information on the simulated diurnal cycle of precipitation over the western coast of Sumatra. We show how assimilating such high frequency in-situ observations can improve the simulated diurnal cycle, verified against satellite-derived precipitation, radar-derived precipitation and rain gauge data. The improvements are due to a better representation of the sea breeze and increased available moisture in the lowest 4 km prior to peak convection. Assimilating wind information alone was sufficient to improve the simulations. We also highlight how during the assimilation, certain multivariate background error constraints and moisture addition in an ad-hoc manner can negatively impact the simulations. Other approaches should be explored to better exploit information from such high frequency observations over this region.

Restricted access
Daehyun Kang, Daehyun Kim, Min-Seop Ahn, and Soon-Il An

Abstract

This study investigates the role of the background meridional moisture gradient (MMG) on the propagation of the Madden–Julian oscillation (MJO) across the Maritime Continent (MC) region. It is found that the interannual variability of the seasonal mean MMG over the southern MC area is associated with the meridional expansion and contraction of the moist area in the vicinity of the MC. Sea surface temperature anomalies associated with relatively high and low seasonal mean MMG exhibit patterns that resemble those of El Niño–Southern Oscillation. By contrasting the years with anomalously low and high MMG, we show that MJO propagation through the MC is enhanced (suppressed) in years with higher (lower) seasonal mean MMG, although the effect is less robust when MMG anomalies are weak. Column-integrated moisture budget analysis further shows that sufficiently large MMG anomalies affect MJO activity by modulating the meridional advection of the mean moisture via MJO wind anomalies. Our results suggest that the background moisture distribution has a strong control over the propagation characteristics of the MJO in the MC region.

Restricted access
Lei Zhou, Ruomei Ruan, and Raghu Murtugudde

Abstract

Madden–Julian oscillations (MJOs) are a major component of tropical intraseasonal variabilities. There are two paths for MJOs across the Maritime Continent; one is a detoured route into the Southern Hemisphere and the other one is around the equator across the Maritime Continent. Here, it is shown that the detoured and nondetoured MJOs have significantly different impacts on the South Pacific convergence zone (SPCZ). The detoured MJOs trigger strong cross-equatorial meridional winds from the Northern Hemisphere into the Southern Hemisphere. The associated meridional moisture and energy transports due to the background states carried by the intraseasonal meridional winds are favorable for reinforcing the SPCZ. In contrast, the influences of nondetoured MJOs on either hemisphere or the meridional transports across the equator are much weaker. The detoured MJOs can extend their impacts to the surrounding regions by shedding Rossby waves. Due to different background vorticity during detoured MJOs in boreal winter, more ray paths of Rossby waves traverse the Maritime Continent connecting the southern Pacific Ocean and the eastern Indian Ocean, but far fewer Rossby wave paths traverse Australia. Further studies on such processes are expected to contribute to a better understanding of extreme climate and natural disasters on the rim of the southern Pacific and Indian Oceans.

Restricted access
Yuntao Wei and Zhaoxia Pu

Abstract

Despite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden–Julian oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO. An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and reevaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud–radiation effect is further enhanced in the convective phase of BSISO.

Restricted access
Beata Latos, Thierry Lefort, Maria K. Flatau, Piotr J. Flatau, Donaldi S. Permana, Dariusz B. Baranowski, Jaka A. I. Paski, Erwin Makmur, Eko Sulystyo, Philippe Peyrillé, Zhe Feng, Adrian J. Matthews, and Jerome M. Schmidt

Abstract

On the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.

Restricted access
Marvin Xiang Ce Seow, Yushi Morioka, and Tomoki Tozuka

Abstract

Influences from the tropical Pacific and Indian Oceans and atmospheric internal variability on the South China Sea (SCS) atmospheric circulation and cold tongue (CT) variabilities in boreal winter and the relative roles of remote forcings at interannual time scales are studied using observational data, reanalysis products, and coupled model experiments. In the observation, strong CT years are accompanied by local cyclonic wind anomalies, which are an equatorial Rossby wave response to enhanced convection over the warmer-than-normal western equatorial Pacific associated with La Niña. Also, the cyclonic wind anomalies are an atmospheric Kelvin wave response to diabatic cooling anomalies linked to both the decaying late fall negative Indian Ocean dipole (IOD) and winter atmospheric internal variability. Partially coupled experiments reveal that both the tropical Pacific air–sea coupling and atmospheric internal variability positively contribute to the coupled variability of the SCS CT, while the air–sea coupling over the tropical Indian Ocean weakens such variabilities. The northwest Pacific anticyclonic wind anomalies that usually precede El Niño–Southern Oscillation–independent negative IOD generated under the tropical Indian Ocean air–sea coupling undermine such variabilities.

Restricted access
Arun Kumar, Jieshun Zhu, and Wanqiu Wang

Abstract

In this paper, the question of potential predictability in meteorological variables associated with skillful prediction of the Madden–Julian oscillation (MJO) during boreal winter is analyzed. The analysis is motivated by the fact that dynamical prediction systems are now capable of predicting MJO up to 30 days or earlier (measured in terms of anomaly correlation for RMM indices). Translating recent gains in MJO prediction skill and relating them back to potential for predicting meteorological variables—for example, precipitation and surface temperature—is not straightforward because of a chain of steps that go into the computation and evaluation of RMM indices. This paper assesses potential predictability in meteorological variables that could be attributed to skillful prediction of the MJO. The analysis is based on the observational data alone and assesses the upper limit of MJO-associated predictability that could be achieved.

Restricted access
Ming Feng, Yongliang Duan, Susan Wijffels, Je-Yuan Hsu, Chao Li, Huiwu Wang, Yang Yang, Hong Shen, Jianjun Liu, Chunlin Ning, and Weidong Yu

Abstract

Sea surface temperatures (SSTs) north of Australia in the Indonesian–Australian Basin are significantly influenced by Madden–Julian oscillation (MJO), an eastward-moving atmospheric disturbance that traverses the globe in the tropics. The region also has large-amplitude diurnal SST variations, which may influence the air–sea heat and moisture fluxes, that provide feedback to the MJO evolution. During the 2018/19 austral summer, a field campaign aiming to better understand the influences of air–sea coupling on the MJO was conducted north of Australia in the Indonesian–Australian Basin. Surface meteorology from buoy observations and upper-ocean data from autonomous fast-profiling float observations were collected. Two MJO convective phases propagated eastward across the region in mid-December 2018 and late January 2019 and the second MJO was in conjunction with a tropical cyclone development. Observations showed that SST in the region was rather sensitive to the MJO forcing. Air–sea heat fluxes warmed the SST throughout the 2018/19 austral summer, punctuated by the MJO activities, with a 2°–3°C drop in SST during the two MJO events. Substantial diurnal SST variations during the suppressed phases of the MJOs were observed, and the near-surface thermal stratifications provided positive feedback for the peak diurnal SST amplitude, which may be a mechanism to influence the MJO evolution. Compared to traditionally vessel-based observation programs, we have relied on fast-profiling floats as the main vehicle in measuring the upper-ocean variability from diurnal to the MJO time scales, which may pave the way for using cost-effective technology in similar process studies.

Full access
Ya Yang, Xiang Li, Jing Wang, and Dongliang Yuan

Abstract

The North Equatorial Subsurface Current (NESC) is a subthermocline ocean current uncovered recently in the tropical Pacific Ocean, flowing westward below the North Equatorial Countercurrent. In this study, the dynamics of the seasonal cycle of this current are studied using historical shipboard acoustic Doppler current profiler measurements and Argo absolute geostrophic currents. Both data show a westward current at the depths of 200–1000 m between 4° and 6°N, with a typical core speed of about 5 and 2 cm s−1, respectively. The subsurface current originates in the eastern Pacific, with its core descending to deeper isopycnal surfaces and moving to the equator as it flows westward. The zonal velocity of the NESC shows pronounced seasonal variability, with the annual-cycle harmonics of vertical isothermal displacement and zonal velocity presenting characters of vertically propagating baroclinic Rossby waves. A simple analytical Rossby wave model is employed to simulate the propagation of the seasonal variations of the westward zonal currents successfully, which is the basis for exploring the wind forcing dynamics. The results suggest that the wind curl forcing in the central-eastern basin between 170° and 140°W associated with the meridional movement of the intertropical convergence zone dominates the NESC seasonal variability in the western Pacific, with the winds west of 170°W and east of 140°W playing a minor role in the forcing.

Free access
Jieshun Zhu, Arun Kumar, and Wanqiu Wang

Abstract

This study revisits MJO predictability based on the “perfect model” approach with a contemporary model. Experiments are performed to address the reasons for substantial uncertainties in current estimates of MJO predictability, with a focus on the influence of atmospheric convection parameterization. Specifically, two atmospheric convection schemes are applied for experiments with the NOAA Climate Forecast System, version 2 (CFSv2). MJO potential predictability and prediction skill are assessed, with MJO indices taken as the first two principal components of the combined fields of near-equatorially averaged 200-hPa zonal wind, 850-hPa zonal wind, and outgoing longwave radiation at the top of the atmosphere. Analyses indicate that the convection scheme alone can have substantial influence on the estimate of MJO predictability, with estimates differing by as much as 15 days. Further diagnostics suggest that the shorter predictability with one convection scheme is mainly caused by too weak of an MJO signal. The choice of atmospheric convection scheme also exerts effects on the phase dependency of MJO predictability, and the “Maritime Continent prediction barrier” is identified to be more evident with one convection scheme than with the other.

Free access