Browse

You are looking at 1 - 2 of 2 items for :

  • Monthly Weather Review x
  • The 1st NOAA Workshop on Leveraging AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction x
  • Refine by Access: All Content x
Clear All
Ryan Lagerquist, Amy McGovern, Cameron R. Homeyer, David John Gagne II, and Travis Smith

Abstract

This paper describes the development of convolutional neural networks (CNN), a type of deep-learning method, to predict next-hour tornado occurrence. Predictors are a storm-centered radar image and a proximity sounding from the Rapid Refresh model. Radar images come from the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) and Gridded NEXRAD WSR-88D Radar dataset (GridRad), both of which are multiradar composites. We train separate CNNs on MYRORSS and GridRad data, present an experiment to optimize the CNN settings, and evaluate the chosen CNNs on independent testing data. Both models achieve an area under the receiver-operating-characteristic curve (AUC) well above 0.9, which is considered to be excellent performance. The GridRad model achieves a critical success index (CSI) of 0.31, and the MYRORSS model achieves a CSI of 0.17. The difference is due primarily to event frequency (percentage of storms that are tornadic in the next hour), which is 3.52% for GridRad but only 0.24% for MYRORSS. The best CNN predictions (true positives and negatives) occur for strongly rotating tornadic supercells and weak nontornadic cells in mesoscale convective systems, respectively. The worst predictions (false positives and negatives) occur for strongly rotating nontornadic supercells and tornadic cells in quasi-linear convective systems, respectively. The performance of our CNNs is comparable to an operational machine-learning system for severe weather prediction, which suggests that they would be useful for real-time forecasting.

Free access
Anthony Wimmers, Christopher Velden, and Joshua H. Cossuth

Abstract

A deep learning convolutional neural network model is used to explore the possibilities of estimating tropical cyclone (TC) intensity from satellite images in the 37- and 85–92-GHz bands. The model, called “DeepMicroNet,” has unique properties such as a probabilistic output, the ability to operate from partial scans, and resiliency to imprecise TC center fixes. The 85–92-GHz band is the more influential data source in the model, with 37 GHz adding a marginal benefit. Training the model on global best track intensities produces model estimates precise enough to replicate known best track intensity biases when compared to aircraft reconnaissance observations. Model root-mean-square error (RMSE) is 14.3 kt (1 kt ≈ 0.5144 m s−1) compared to two years of independent best track records, but this improves to an RMSE of 10.6 kt when compared to the higher-standard aircraft reconnaissance-aided best track dataset, and to 9.6 kt compared to the reconnaissance-aided best track when using the higher-resolution TRMM TMI and Aqua AMSR-E microwave observations only. A shortage of training and independent testing data for category 5 TCs leaves the results at this intensity range inconclusive. Based on this initial study, the application of deep learning to TC intensity analysis holds tremendous promise for further development with more advanced methodologies and expanded training datasets.

Full access