Browse

You are looking at 1 - 10 of 12 items for :

  • Earth’s Energy Imbalance and Energy Flows through the Climate System x
  • Refine by Access: All Content x
Clear All
Seiji Kato, Norman G. Loeb, John T. Fasullo, Kevin E. Trenberth, Peter H. Lauritzen, Fred G. Rose, David A. Rutan, and Masaki Satoh

Abstract

Effects of water mass imbalance and hydrometeor transport on the enthalpy flux and water phase on diabatic heating rate in computing the regional energy and water budget of the atmosphere over ocean are investigated. Equations of energy and water budget of the atmospheric column that explicitly consider the velocity of liquid and ice cloud particles, and rain and snow are formulated by separating water variables from dry air. Differences of energy budget equations formulated in this study from those used in earlier studies are that 1) diabatic heating rate depends on water phase, 2) diabatic heating due to net condensation of nonprecipitating hydrometeors is included, and 3) hydrometeors can be advected with a different velocity from the dry-air velocity. Convergence of water vapor associated with phase change and horizontal transport of hydrometeors is to increase diabatic heating in the atmospheric column where hydrometeors are formed and exported and to reduce energy where hydrometeors are imported and evaporated. The process can improve the regional energy and water mass balance when energy data products are integrated. Effects of enthalpy transport associated with water mass transport through the surface are cooling to the atmosphere and warming to the ocean when the enthalpy is averaged over the global ocean. There is no net effect to the atmosphere and ocean columns combined. While precipitation phase changes the regional diabatic heating rate up to 15 W m−2, the dependence of the global mean value on the temperature threshold of melting snow to form rain is less than 1 W m−2.

Open access
Yang Liu, Jisk Attema, and Wilco Hazeleger

Abstract

Interactions between the atmosphere and ocean play a crucial role in redistributing energy, thereby maintaining the energy balance of the climate system. Here, we examine the compensation between the atmosphere and ocean’s heat transport variations. Motivated by previous studies with mostly numerical climate models, this so-called Bjerknes compensation is studied using reanalysis datasets. We find that atmospheric energy transport (AMET) and oceanic energy transport (OMET) variability generally agree well among the reanalysis datasets. With multiple reanalysis products, we show that Bjerknes compensation is present at almost all latitudes from 40° to 70°N in the Northern Hemisphere from interannual to decadal time scales. The compensation rates peak at different latitudes across different time scales, but they are always located in the subtropical and subpolar regions. Unlike some experiments with numerical climate models, which attribute the compensation to the variation of transient eddy transports in response to the changes of OMET at multidecadal time scales, we find that the response of mean flow to the OMET variability leads to the Bjerknes compensation, and thus the shift of the Ferrel cell at midlatitudes at decadal time scales in winter. This cell itself is driven by the eddy momentum flux. The oceanic response to AMET variations is primarily wind driven. In summer, there is hardly any compensation and the proposed mechanism is not applicable. Given the short historical records, we cannot determine whether the ocean drives the atmospheric variations or the reverse.

Open access
Seiji Kato and Fred G. Rose

Abstract

Vertical profiles of shortwave and longwave irradiances computed with satellite-derived cloud properties and temperature and humidity profiles from reanalysis are used to estimate entropy production. Entropy production by shortwave radiation is computed by the absorbed irradiance within layers in the atmosphere and by the surface divided by their temperatures. Similarly, entropy production by longwave radiation is computed by emitted irradiance to space from layers in the atmosphere and surface divided by their temperatures. Global annual mean entropy production by shortwave absorption and longwave emission to space are, respectively, 0.852 and 0.928 W m−2 K−1. With a steady-state assumption, entropy production by irreversible processes within the Earth system is estimated to be 0.076 W m−2 K−1 and by nonradiative irreversible processes to be 0.049 W m−2 K−1. Both global annual mean entropy productions by shortwave absorption and longwave emission to space increase with increasing shortwave absorption (i.e., with decreasing the planetary albedo). The increase of entropy production by shortwave absorption is, however, larger than the increase of entropy production by longwave emission to space. The result implies that global annual mean entropy production by irreversible processes decreases with increasing shortwave absorption. Input and output temperatures derived by dividing the absorbed shortwave irradiance and emitted longwave irradiance to space by respective entropy production are, respectively, 282 and 259 K, which give the Carnot efficiency of the Earth system of 8.5%.

Open access
Christopher M. Thomas, Bo Dong, and Keith Haines

Abstract

The NASA Energy and Water Cycle Study (NEWS) climatology is a self-consistent coupled annual and seasonal cycle solution for radiative, turbulent, and water fluxes over Earth’s surface using Earth observation data covering 2000–09. Here we seek to improve the NEWS solution, particularly over the ocean basins, by considering spatial covariances in the observation errors (some evidence for which is found by comparing five turbulent flux products over the oceans) and by introducing additional horizontal transports from ocean reanalyses as weak constraints. By explicitly representing large error covariances between surface heat flux components over the major ocean basins we retain the flux contrasts present in the original data and infer additional heat losses over the North Atlantic Ocean, more consistent with a strong Atlantic overturning. This change does not alter the global flux balance but if only the errors in evaporation and precipitation are correlated then those fluxes experience larger adjustments (e.g., the surface latent heat flux increases to 85 ± 2 W m−2). Replacing SeaFlux v1 with J-OFURO v3 (Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations) ocean fluxes also leads to a considerable increase in the global latent heat loss as well as a larger North Atlantic heat loss. Furthermore, including a weak constraint on the horizontal transports of heat and freshwater from high-resolution ocean reanalyses improves the net fluxes over the North Atlantic, Caribbean Sea, and Arctic Ocean, without any impact on the global flux balances. These results suggest that better characterized flux uncertainties can greatly improve the quality of the optimized flux solution.

Open access
Allison Hogikyan, Meghan F. Cronin, Dongxiao Zhang, and Seiji Kato

Abstract

The ocean surface albedo is responsible for the distribution of solar (shortwave) radiant energy between the atmosphere and ocean and therefore is a key parameter in Earth’s surface energy budget. In situ ocean observations typically do not measure upward reflected solar radiation, which is necessary to compute net solar radiation into the ocean. Instead, the upward component is computed from the measured downward component using an albedo estimate. At two NOAA Ocean Climate Station buoy sites in the North Pacific, the International Satellite Cloud Climatology Project (ISCCP) monthly climatological albedo has been used, while for the NOAA Global Tropical Buoy Array a constant albedo is used. This constant albedo is also used in the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk flux algorithm. This study considers the impacts of using the more recently available NASA Cloud and the Earth’s Radiant Energy System (CERES) albedo product for these ocean surface heat flux products. Differences between albedo estimates in global satellite products like these imply uncertainty in the net surface solar radiation heat flux estimates that locally exceed the target uncertainty of 1.0 W m−2 for the global mean, set by the Global Climate Observing System (GCOS) of the World Meteorological Organization (WMO). Albedo has large spatiotemporal variability on hourly, monthly, and interannual time scales. Biases in high-resolution SWnet (the difference between surface downwelling and upwelling shortwave radiation) can arise if the albedo diurnal cycle is unresolved. As a result, for periods when satellite albedo data are not available it is recommended that an hourly climatology be used when computing high-resolution net surface shortwave radiation.

Open access
Kevin E. Trenberth and Yongxin Zhang

Abstract

The net surface energy flux is computed as a residual of the energy budget using top-of-atmosphere radiation combined with the divergence of the column-integrated atmospheric energy transports, and then used with the vertically integrated ocean heat content tendencies to compute the ocean meridional heat transports (MHTs). The mean annual cycles and 12-month running mean MHTs as a function of latitude are presented for 2000–16. Effects of the Indonesian Throughflow (ITF), associated with a net volume flow around Australia accompanied by a heat transport, are fully included. Because the ITF-related flow necessitates a return current northward in the Tasman Sea that relaxes during El Niño, the reduced ITF during El Niño may contribute to warming in the south Tasman Sea by allowing the East Australian Current to push farther south even as it gains volume from the tropical waters not flowing through the ITF. Although evident in 2015/16, when a major marine heat wave occurred, these effects can be overwhelmed by changes in the atmospheric circulation. Large interannual MHT variability in the Pacific is 4 times that of the Atlantic. Strong relationships reveal influences from the southern subtropics on ENSO for this period. At the equator, northward ocean MHT arises mainly in the Atlantic (0.75 PW), offset by the Pacific (−0.33 PW) and Indian Oceans (−0.20 PW) while the atmosphere transports energy southward (−0.35 PW). The net equatorial MHT southward (−0.18 PW) is enhanced by −0.1 PW that contributes to the greater warming of the southern (vs northern) oceans.

Open access
Michael Mayer, Steffen Tietsche, Leopold Haimberger, Takamasa Tsubouchi, Johannes Mayer, and Hao Zuo

Abstract

This study combines state-of-the-art reanalyses such as the fifth-generation European Re-Analysis (ERA5) and the Ocean Reanalysis System 5 (ORAS5) with novel observational products to present an updated estimate of the coupled atmosphere–ocean–sea ice Arctic energy budget, including flux and storage terms covering 2001–17. Observational products provide independent estimates of crucial budget terms, including oceanic heat transport from unique mooring-derived data, radiative fluxes from satellites, and sea ice volume from merged satellite data. Results show that the time averages of independent estimates of radiative, atmospheric, and oceanic energy fluxes into the Arctic Ocean domain are remarkably consistent in the sense that their sum closely matches the observed rate of regional long-term oceanic heat accumulation of ~1 W m−2. Atmospheric and oceanic heat transports are found to be stronger compared to earlier assessments (~100 and ~16 W m−2, respectively). Data inconsistencies are larger when considering the mean annual cycle of the coupled energy budget, with RMS values of the monthly budget residual between 7 and 15 W m−2, depending on the employed datasets. This nevertheless represents an average reduction of ~72% of the residual compared to earlier work and demonstrates the progress made in data quality and diagnostic techniques. Finally, the budget residual is eliminated using a variational approach to provide a best estimate of the mean annual cycle. The largest remaining sources of uncertainty are ocean heat content and latent heat associated with sea ice melt and freeze, which both suffer from the lack of observational constraints. More ocean in situ observations and reliable sea ice thickness observations and their routinely assimilation into reanalyses are needed to further reduce uncertainty.

Open access
Dean Roemmich, Jeffrey T. Sherman, Russ E. Davis, Kyle Grindley, Michael McClune, Charles J. Parker, David N. Black, Nathalie Zilberman, Sarah G. Purkey, Philip J. H. Sutton, and John Gilson

Abstract

Deployment of Deep Argo regional pilot arrays is underway as a step toward a global array of 1250 surface-to-bottom profiling floats embedded in the upper-ocean (2000 m) Argo Program. Of the 80 active Deep Argo floats as of July 2019, 55 are Deep Sounding Oceanographic Lagrangian Observer (SOLO) 6000-m instruments, and the rest are composed of three additional models profiling to either 4000 or 6000 m. Early success of the Deep SOLO is owed partly to its evolution from the Core Argo SOLO-II. Here, Deep SOLO design choices are described, including the spherical glass pressure housing, the hydraulics system, and the passive bottom detection system. Operation of Deep SOLO is flexible, with the mission parameters being adjustable from shore via Iridium communications. Long lifetime is a key element in sustaining a global array, and Deep SOLO combines a long battery life of over 200 cycles to 6000 m with robust operation and a low failure rate. The scientific value of Deep SOLO is illustrated, including examples of its ability (i) to observe large-scale spatial and temporal variability in deep ocean temperature and salinity, (ii) to sample newly formed water masses year-round and within a few meters of the sea floor, and (iii) to explore the poorly known abyssal velocity field and deep circulation of the World Ocean. Deep SOLO’s full-depth range and its potential for global coverage are critical attributes for complementing the Core Argo Program and achieving these objectives.

Open access
Tristan S. L’Ecuyer, Yun Hang, Alexander V. Matus, and Zhien Wang

Abstract

This study revisits the classical problem of quantifying the radiative effects of unique cloud types in the era of spaceborne active observations. The radiative effects of nine cloud types, distinguished based on their vertical structure defined by CloudSat and CALIPSO observations, are assessed at both the top of the atmosphere and the surface. The contributions from single- and multilayered clouds are explicitly diagnosed. The global, annual mean net cloud radiative effect at the top of the atmosphere is found to be −17.1 ± 4.2 W m−2 owing to −44.2 ± 2 W m−2 of shortwave cooling and 27.1 ± 3.7 W m−2 of longwave heating. Leveraging explicit cloud base and vertical structure information, we further estimate the annual mean net cloud radiative effect at the surface to be −24.8 ± 8.7 W m−2 (−51.1 ± 7.8 W m−2 in the shortwave and 26.3 ± 3.8 W m−2 in the longwave). Multilayered clouds are found to exert the strongest influence on the top-of-atmosphere energy balance. However, a strong asymmetry in net cloud radiative cooling between the hemispheres (8.6 W m−2) is dominated by enhanced cooling from stratocumulus over the southern oceans. It is found that there is no corresponding asymmetry at the surface owing to enhanced longwave emission by southern ocean clouds in winter, which offsets a substantial fraction of their impact on solar absorption in summer. Thus the asymmetry in cloud radiative effects is entirely realized as an atmosphere heating imbalance between the hemispheres.

Full access
Norman G. Loeb, Hailan Wang, Fred G. Rose, Seiji Kato, William L. Smith Jr, and Sunny Sun-Mack

Abstract

A diagnostic tool for determining surface and atmospheric contributions to interannual variations in top-of-atmosphere (TOA) reflected shortwave (SW) and net downward SW surface radiative fluxes is introduced. The method requires only upward and downward radiative fluxes at the TOA and surface as input and therefore can readily be applied to both satellite-derived and model-generated radiative fluxes. Observations from the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Edition 4.0 product show that 81% of the monthly variability in global mean reflected SW TOA flux anomalies is associated with atmospheric variations (mainly clouds), 6% is from surface variations, and 13% is from atmosphere–surface covariability. Over the Arctic Ocean, most of the variability in both reflected SW TOA flux and net downward SW surface flux anomalies is explained by variations in sea ice and cloud fraction alone (r 2 = 0.94). Compared to CERES, variability in two reanalyses—the ECMWF interim reanalysis (ERA-Interim) and NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)—show large differences in the regional distribution of variance for both the atmospheric and surface contributions to anomalies in net downward SW surface flux. For MERRA-2 the atmospheric contribution is 17% too large compared to CERES while ERA-Interim underestimates the variance by 15%. The difference is mainly due to how cloud variations are represented in the reanalyses. The overall surface contribution in both ERA-Interim and MERRA-2 is smaller than CERES EBAF by 15% for ERA-Interim and 58% for MERRA-2, highlighting limitations of the reanalyses in representing surface albedo variations and their influence on SW radiative fluxes.

Open access