Browse
Abstract
This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products.
This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis.
The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Q net have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Q net variabilities over the basin scale.
Abstract
This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products.
This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis.
The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Q net have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Q net variabilities over the basin scale.
Abstract
The decadal variation in the tropical Indian Ocean is investigated using outputs from a 200-yr integration of the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) ocean–atmosphere coupled model. The first EOF mode of the decadal bandpass- (9–35 yr) filtered sea surface temperature anomaly (SSTA) represents a basinwide mode and is closely related with the Pacific ENSO-like decadal variability. The second EOF mode shows a clear east–west SSTA dipole pattern similar to that of the interannual Indian Ocean dipole (IOD) and may be termed the decadal IOD. However, it is demonstrated that the decadal air–sea interaction in the Tropics can be a statistical artifact; it should be interpreted more correctly as decadal modulation of interannual IOD events (i.e., asymmetric or skewed occurrence of positive and negative events). Heat budget analysis has revealed that the occurrence of IOD events is governed by variations in the southward Ekman heat transport across 15°S and variations in the Indonesian Throughflow associated with the ENSO. The variations in the southward Ekman heat transport are related to the Mascarene high activities.
Abstract
The decadal variation in the tropical Indian Ocean is investigated using outputs from a 200-yr integration of the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) ocean–atmosphere coupled model. The first EOF mode of the decadal bandpass- (9–35 yr) filtered sea surface temperature anomaly (SSTA) represents a basinwide mode and is closely related with the Pacific ENSO-like decadal variability. The second EOF mode shows a clear east–west SSTA dipole pattern similar to that of the interannual Indian Ocean dipole (IOD) and may be termed the decadal IOD. However, it is demonstrated that the decadal air–sea interaction in the Tropics can be a statistical artifact; it should be interpreted more correctly as decadal modulation of interannual IOD events (i.e., asymmetric or skewed occurrence of positive and negative events). Heat budget analysis has revealed that the occurrence of IOD events is governed by variations in the southward Ekman heat transport across 15°S and variations in the Indonesian Throughflow associated with the ENSO. The variations in the southward Ekman heat transport are related to the Mascarene high activities.
Abstract
The Indian Ocean dipole mode (IODM) is examined by comparing the characteristics of oceanic and atmospheric circulations, heat budgets, and possible mechanisms of IODM between El Niño and non–El Niño years. Forty-year ECMWF Re-Analysis (ERA-40) data, Reynolds SST data, and ocean assimilation data from the Modular Ocean Model are used to form composites of the IODM that occur during El Niño (1972, 1982, and 1997) and non–El Niño (1961, 1967, and 1994) years. In El Niño years, two off-equatorial, anticyclonic circulations develop, associated with the increased pressure over the eastern Indian Ocean. The anticyclonic circulation over the Northern Hemisphere enhances the easterly component of the winds in the northwestern Indian Ocean. This enhanced easterly component increases the mixed layer temperature by inducing an anomalous westward ocean current that advects the warm mean mixed layer from the central to the western Indian Ocean. Meanwhile, the anticyclonic circulation over the southeastern Indian Ocean strengthens southeasterlies, thereby causing oceanic meridional and vertical advection of the cold mean temperature. Consequently, the IODM in El Niño years is characterized by the warming in the northwestern and the cooling in the southeastern Indian Ocean. In non–El Niño years, a monsoonlike wind flow increases the westerly and southeasterly components of the wind over the northwestern and southeastern Indian Ocean, respectively. Oceanic currents induced by these winds result in anomalous cold advection in both of these regions. In addition, the monsoonlike wind flow over the southeastern Indian Ocean enhances the anomalous latent and sensible heat fluxes in non–El Niño years. Hence, the cooling of the eastern tropical Indian Ocean, rather than the warming of the western Indian Ocean, becomes the major feature of the IODM during non–El Niño years.
Abstract
The Indian Ocean dipole mode (IODM) is examined by comparing the characteristics of oceanic and atmospheric circulations, heat budgets, and possible mechanisms of IODM between El Niño and non–El Niño years. Forty-year ECMWF Re-Analysis (ERA-40) data, Reynolds SST data, and ocean assimilation data from the Modular Ocean Model are used to form composites of the IODM that occur during El Niño (1972, 1982, and 1997) and non–El Niño (1961, 1967, and 1994) years. In El Niño years, two off-equatorial, anticyclonic circulations develop, associated with the increased pressure over the eastern Indian Ocean. The anticyclonic circulation over the Northern Hemisphere enhances the easterly component of the winds in the northwestern Indian Ocean. This enhanced easterly component increases the mixed layer temperature by inducing an anomalous westward ocean current that advects the warm mean mixed layer from the central to the western Indian Ocean. Meanwhile, the anticyclonic circulation over the southeastern Indian Ocean strengthens southeasterlies, thereby causing oceanic meridional and vertical advection of the cold mean temperature. Consequently, the IODM in El Niño years is characterized by the warming in the northwestern and the cooling in the southeastern Indian Ocean. In non–El Niño years, a monsoonlike wind flow increases the westerly and southeasterly components of the wind over the northwestern and southeastern Indian Ocean, respectively. Oceanic currents induced by these winds result in anomalous cold advection in both of these regions. In addition, the monsoonlike wind flow over the southeastern Indian Ocean enhances the anomalous latent and sensible heat fluxes in non–El Niño years. Hence, the cooling of the eastern tropical Indian Ocean, rather than the warming of the western Indian Ocean, becomes the major feature of the IODM during non–El Niño years.
Abstract
Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects.
A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.
Abstract
Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects.
A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.
Abstract
Present-day OGCMs give low values of annual mean net heat flux (AMNHF) in the tropical Indian Ocean, compared to climatologies. AMNHF generation is examined in an open-boundary model of this region with realistic coastlines. In the first two of three experiments only annual mean wind stresses were applied so that a modified form of the “minimum depth criterion” of the previous paper would be applicable. Area-integrated AMNHF was well below observed values, despite the fact that western boundary inflow was substantially deeper and colder than was expected from the modified minimum depth estimate. The model showed large “spikes” in the gradient of “depth-integrated steric height” (DISH) along the western boundary, coinciding with coastline steps (which were absent in the previous paper). Most diapycnal entrainment occurred next to the coast, near these steps. In a third experiment a seasonal cycle of wind stress was added to the same annual mean. Annual mean diapycnal mixing and entrainment increased and the western boundary inflow deepened, resulting in substantially greater AMNHF for the same annual mean Ekman transports. However, area-integrated AMNHF was still well below the mean of directly observed surface fluxes. The recirculation around the “Great Whirl” doubled, permitting more cold water crossing the equator in one year to mix with recirculated water generated in a previous year. Entrainment up to the surface thus went by stages, over more than one year. The increased Great Whirl was related to stronger annual mean curls of nonlinear terms in the momentum equation, while the deeper entrainment was caused by stronger annual mean diapycnal mixing. In all experiments, diapycnal mixing was primarily due to the “flux corrected transport” (FCT) advective scheme, which in effect replaces spurious convective overturn by numerical diffusion. More research is needed to solve such problems, but sensitivity of AMNHF in OGCMs to time-varying forcing—due to seasonal, intraseasonal, or baroclinic instability—may offer a new source of climate predictability.
Abstract
Present-day OGCMs give low values of annual mean net heat flux (AMNHF) in the tropical Indian Ocean, compared to climatologies. AMNHF generation is examined in an open-boundary model of this region with realistic coastlines. In the first two of three experiments only annual mean wind stresses were applied so that a modified form of the “minimum depth criterion” of the previous paper would be applicable. Area-integrated AMNHF was well below observed values, despite the fact that western boundary inflow was substantially deeper and colder than was expected from the modified minimum depth estimate. The model showed large “spikes” in the gradient of “depth-integrated steric height” (DISH) along the western boundary, coinciding with coastline steps (which were absent in the previous paper). Most diapycnal entrainment occurred next to the coast, near these steps. In a third experiment a seasonal cycle of wind stress was added to the same annual mean. Annual mean diapycnal mixing and entrainment increased and the western boundary inflow deepened, resulting in substantially greater AMNHF for the same annual mean Ekman transports. However, area-integrated AMNHF was still well below the mean of directly observed surface fluxes. The recirculation around the “Great Whirl” doubled, permitting more cold water crossing the equator in one year to mix with recirculated water generated in a previous year. Entrainment up to the surface thus went by stages, over more than one year. The increased Great Whirl was related to stronger annual mean curls of nonlinear terms in the momentum equation, while the deeper entrainment was caused by stronger annual mean diapycnal mixing. In all experiments, diapycnal mixing was primarily due to the “flux corrected transport” (FCT) advective scheme, which in effect replaces spurious convective overturn by numerical diffusion. More research is needed to solve such problems, but sensitivity of AMNHF in OGCMs to time-varying forcing—due to seasonal, intraseasonal, or baroclinic instability—may offer a new source of climate predictability.
Abstract
Impacts of the ENSO and Indian Ocean dipole (IOD) phenomena on winter storm-track activity over the Southern Hemisphere are examined on the basis of the observed and reanalysis data for 1979–2003. The partial correlation technique is utilized to distinguish the impact of one phenomenon from that of the other. During an El Niño event, the subtropical jet stream tends to strengthen substantially, enhancing the jet bifurcation and thereby reducing storm-track activity over the midlatitude South Pacific and to the south of Australia. During a positive IOD event, the westerlies and storm-track activity also tend to weaken over southern Australia and portions of New Zealand. Thus both the positive IOD and, to a lesser extent, El Niño events act to reduce winter rainfall significantly over some portions of South Australia and New Zealand. Precipitation over the southeastern portion of the continent and over the northern portions of the two main islands of New Zealand is more sensitive to IOD. Significant reduction in precipitation associated with an El Niño event is seen over Tasmania. Over midlatitude South America, in contrast, the enhancement of the westerlies and storm-track activity tends to be more significant in a positive IOD event than in an El Niño event. It is demonstrated that despite the dominant influence of the Southern Hemispheric Annular Mode from a hemispheric viewpoint, the remote influence of ENSO and/or IOD on local storm-track activity can be detected in winter as a significant signal in particular midlatitude regions, including South Australia and New Zealand.
Abstract
Impacts of the ENSO and Indian Ocean dipole (IOD) phenomena on winter storm-track activity over the Southern Hemisphere are examined on the basis of the observed and reanalysis data for 1979–2003. The partial correlation technique is utilized to distinguish the impact of one phenomenon from that of the other. During an El Niño event, the subtropical jet stream tends to strengthen substantially, enhancing the jet bifurcation and thereby reducing storm-track activity over the midlatitude South Pacific and to the south of Australia. During a positive IOD event, the westerlies and storm-track activity also tend to weaken over southern Australia and portions of New Zealand. Thus both the positive IOD and, to a lesser extent, El Niño events act to reduce winter rainfall significantly over some portions of South Australia and New Zealand. Precipitation over the southeastern portion of the continent and over the northern portions of the two main islands of New Zealand is more sensitive to IOD. Significant reduction in precipitation associated with an El Niño event is seen over Tasmania. Over midlatitude South America, in contrast, the enhancement of the westerlies and storm-track activity tends to be more significant in a positive IOD event than in an El Niño event. It is demonstrated that despite the dominant influence of the Southern Hemispheric Annular Mode from a hemispheric viewpoint, the remote influence of ENSO and/or IOD on local storm-track activity can be detected in winter as a significant signal in particular midlatitude regions, including South Australia and New Zealand.
Abstract
The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east–west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM–El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other.
The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.
Abstract
The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east–west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM–El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other.
The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.
Abstract
Since the ISV of the convection is an intermittent phenomenon, the local mode analysis (LMA) technique is used to detect only the ensemble of intraseasonal events that are well organized at large scale. The LMA technique is further developed in this paper in order to perform multivariate analysis given patterns of SST and surface wind perturbations associated specifically with these intraseasonal events. During boreal winter, the basin-scale eastward propagation of the convective perturbation is present only over the Indian Ocean Basin. The intraseasonal SST response to convective perturbations is large and recurrent over thin mixed layer regions located north of Australia and in the Indian Ocean between 5° and 10°S. By contrast, there is little SST response in the western Pacific basin and no clear eastward propagation of the convective perturbation. During boreal summer, the SST response is large over regions with thin mixed layers located north of the Bay of Bengal, in the Arabian Sea, and in the China Sea. The northeastward propagation of the convective perturbation over the Bay of Bengal is associated with a standing oscillation of the SST and the surface wind between the equator and the northern part of the bay. In fact, many intraseasonal events mostly concern a single basin, suggesting that the interbasin organization is not a necessary condition for the existence of coupled intraseasonal perturbations of the convection.
The perturbation of the surface wind tends to be larger to the west of the large-scale convective perturbation (like for a Gill-type dynamical response). For eastward propagating perturbations, the cooling due to the reinforcement of the wind (i.e., surface turbulent heat flux) thus generally lags the radiative cooling due to the reduction of the surface solar flux by the convective cloudiness. This large-scale Gill-type response of the surface wind also cools the surface to the west of the basin (northwest Arabian Sea and northwest Pacific Ocean), even if the convection is locally weak. An intriguing result is a frequently occurring small delay between the maximum surface wind and the minimum SST. Different explanations are invoked, like a rapid surface cooling due to the vanishing of an ocean warm layer (diurnal surface warming due to solar radiation in low wind conditions) as soon as the wind increases.
Abstract
Since the ISV of the convection is an intermittent phenomenon, the local mode analysis (LMA) technique is used to detect only the ensemble of intraseasonal events that are well organized at large scale. The LMA technique is further developed in this paper in order to perform multivariate analysis given patterns of SST and surface wind perturbations associated specifically with these intraseasonal events. During boreal winter, the basin-scale eastward propagation of the convective perturbation is present only over the Indian Ocean Basin. The intraseasonal SST response to convective perturbations is large and recurrent over thin mixed layer regions located north of Australia and in the Indian Ocean between 5° and 10°S. By contrast, there is little SST response in the western Pacific basin and no clear eastward propagation of the convective perturbation. During boreal summer, the SST response is large over regions with thin mixed layers located north of the Bay of Bengal, in the Arabian Sea, and in the China Sea. The northeastward propagation of the convective perturbation over the Bay of Bengal is associated with a standing oscillation of the SST and the surface wind between the equator and the northern part of the bay. In fact, many intraseasonal events mostly concern a single basin, suggesting that the interbasin organization is not a necessary condition for the existence of coupled intraseasonal perturbations of the convection.
The perturbation of the surface wind tends to be larger to the west of the large-scale convective perturbation (like for a Gill-type dynamical response). For eastward propagating perturbations, the cooling due to the reinforcement of the wind (i.e., surface turbulent heat flux) thus generally lags the radiative cooling due to the reduction of the surface solar flux by the convective cloudiness. This large-scale Gill-type response of the surface wind also cools the surface to the west of the basin (northwest Arabian Sea and northwest Pacific Ocean), even if the convection is locally weak. An intriguing result is a frequently occurring small delay between the maximum surface wind and the minimum SST. Different explanations are invoked, like a rapid surface cooling due to the vanishing of an ocean warm layer (diurnal surface warming due to solar radiation in low wind conditions) as soon as the wind increases.
Abstract
The Indian summer monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high-resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations.
In this study, the relationships between the ISM and tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean dipole mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the coupled manifold, is used to investigate the TIO SST variability and its relation with the tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
Abstract
The Indian summer monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high-resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations.
In this study, the relationships between the ISM and tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean dipole mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the coupled manifold, is used to investigate the TIO SST variability and its relation with the tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
Abstract
New satellite and in situ observations show large intraseasonal (10–60 day) variability of surface winds and upper-ocean current in the equatorial Indian Ocean, particularly in the east. An ocean model forced by the Quick Scatterometer (QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal current. The model has realistic upper-ocean currents and thermocline depth variabilities on intraseasonal to interannual scales. The quality of the simulation is directly attributed to the accuracy of the wind forcing. At the equator, moderate westerly winds are punctuated by strong 10–40-day westerly wind bursts. The wind bursts force swift, intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. The zonal momentum balance is between local acceleration, stress, and pressure, while nonlinearity deepens and strengthens the eastward current. The westward pressure force associated with the thermocline deepening toward the east rapidly arrests eastward jets and, subsequently, generates (weak) westward flow. Thus, in accord with direct observations in the east, the spring jet is a single intraseasonal event, there are intraseasonal jets in summer, and the fall jet is long lived but strongly modulated on an intraseasonal scale. The zonal pressure force is almost always westward in the upper 120 m, and changes sign twice a year in the 120–200-m layer. Transient eastward equatorial undercurrents in early spring and late summer are associated with semiannual Rossby waves generated at the eastern boundary following thermocline deepening by the spring and fall jets. An easterly wind stress is not necessary to generate the undercurrents. Experiments with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure force and current in the east have an intrinsic 90-day time scale that arises purely from equatorial adjustment.
Abstract
New satellite and in situ observations show large intraseasonal (10–60 day) variability of surface winds and upper-ocean current in the equatorial Indian Ocean, particularly in the east. An ocean model forced by the Quick Scatterometer (QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal current. The model has realistic upper-ocean currents and thermocline depth variabilities on intraseasonal to interannual scales. The quality of the simulation is directly attributed to the accuracy of the wind forcing. At the equator, moderate westerly winds are punctuated by strong 10–40-day westerly wind bursts. The wind bursts force swift, intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. The zonal momentum balance is between local acceleration, stress, and pressure, while nonlinearity deepens and strengthens the eastward current. The westward pressure force associated with the thermocline deepening toward the east rapidly arrests eastward jets and, subsequently, generates (weak) westward flow. Thus, in accord with direct observations in the east, the spring jet is a single intraseasonal event, there are intraseasonal jets in summer, and the fall jet is long lived but strongly modulated on an intraseasonal scale. The zonal pressure force is almost always westward in the upper 120 m, and changes sign twice a year in the 120–200-m layer. Transient eastward equatorial undercurrents in early spring and late summer are associated with semiannual Rossby waves generated at the eastern boundary following thermocline deepening by the spring and fall jets. An easterly wind stress is not necessary to generate the undercurrents. Experiments with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure force and current in the east have an intrinsic 90-day time scale that arises purely from equatorial adjustment.