Browse

You are looking at 1 - 5 of 5 items for :

  • Journal of the Atmospheric Sciences x
  • Years of the Maritime Continent x
  • Refine by Access: All Content x
Clear All
Yuntao Wei and Zhaoxia Pu

Abstract

Despite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden–Julian oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO. An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and reevaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud–radiation effect is further enhanced in the convective phase of BSISO.

Restricted access
James H. Ruppert Jr., Xingchao Chen, and Fuqing Zhang

Abstract

Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.

Free access
Benjamin A. Toms, Susan C. van den Heever, Emily M. Riley Dellaripa, Stephen M. Saleeby, and Eric D. Maloney

Abstract

While the boreal summer Madden–Julian oscillation (MJO) is commonly defined as a planetary-scale disturbance, the convective elements that constitute its cloud dipole exhibit pronounced variability in their morphology. We therefore investigate the relationship between the intraseasonal cloud anomaly of the MJO and the convective elements that populate its interior by simulating a boreal summer MJO event over the Maritime Continent using a cloud-resolving model. A progressive relationship between convective cell morphology and the MJO within the convectively enhanced region of the MJO was identified and characterized as follows: anomalously long-lasting cells in the initial phases, followed by an increased number of cells in the intermediate phases, progressing into more expansive cells in the terminal phases. A progressive relationship does not seem to exist within the convectively suppressed region of the MJO within the simulated domain, however. Within the convectively enhanced region of the MJO, the progressive relationship is partially explained by the evolution of bulk atmospheric characteristics, such as instability and wind shear. Positive midlevel moisture anomalies coincide with anomalously long-lasting convective cells, which is hypothesized to further cascade into an increase in convective cell volume, although variability in the number of convective cells seems to be related to an unidentified variable. This intraseasonal relationship between convective cell morphology and the boreal summer MJO within the Maritime Continent may have broader implications for the large-scale structure and evolution of the MJO, related to both convective moistening and cloud-radiative feedbacks.

Free access
Giuseppe Torri, David K. Adams, Huiqun Wang, and Zhiming Kuang

Abstract

Convective processes in the atmosphere over the Maritime Continent and their diurnal cycles have important repercussions for the circulations in the tropics and beyond. In this work, we present a new dataset of precipitable water vapor (PWV) obtained from the Sumatran GPS Array (SuGAr), a dense network of GPS stations principally for examining seismic and tectonic activity along the western coast of Sumatra and several offshore islands. The data provide an opportunity to examine the characteristics of convection over the area in greater detail than before. In particular, our results show that the diurnal cycle of PWV on Sumatra has a single late afternoon peak, while that offshore has both a midday and a nocturnal peak. The SuGAr data are in good agreement with GPS radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, as well as with imaging spectrometer data from the Ozone Measuring Instrument (OMI). A comparison between SuGAr and the NASA Water Vapor Project (NVAP), however, shows significant differences, most likely due to discrepancies in the temporal and spatial resolutions. To further understand the diurnal cycle contained in the SuGAr data, we explore the impact of the Madden–Julian oscillation (MJO) on the diurnal cycle with the aid of the Weather Research and Forecasting (WRF) Model. Results show that the daily mean and the amplitude of the diurnal cycle appear smaller during the suppressed phase relative to the developing/active MJO phase. Furthermore, the evening/nighttime peaks of PWV offshore appear later during the suppressed phase of the MJO compared to the active phase.

Free access
James H. Ruppert Jr. and Fuqing Zhang

Abstract

An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s−1) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.

Full access