Browse
Abstract
The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.
Abstract
The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.
Abstract
Sea ice formation, its transport, and its melting cause the redistribution of heat and salt, which plays an important role in the climate and biogeochemical systems. In the Sea of Okhotsk, a heat and salt flux dataset is created in which such sea ice processes are included, with a spatial resolution of ~12.5 km. The dataset is based on a heat budget analysis using ice concentration, thickness, and drift speed from satellite observations and the ECMWF Interim Re-Analysis (ERA-Interim) data. The salt flux calculation considers both salt supplied to the ocean from sea ice production and freshwater supplied when the ice melts. This dataset will be useful for the validation and boundary conditions of modeling studies. The spatial distribution of the annual fluxes shows a distinct contrast between north and south: significant ocean cooling with salt supply is shown in the northern coastal polynya region, while ocean heating with freshwater supply is shown in the south. This contrast suggests a transport of freshwater and negative heat by ice advection. The annual fluxes also show ocean cooling with freshwater supply in the Kashevarov Bank (KB) region and the central and eastern Sea of Okhotsk, suggesting the effect of warm water advection. In the ice melt season, relatively prominent ice melting is shown in the coastal polynya region, probably due to large solar heating of the upper ocean. This indicates that the polynya works as a “meltwater factory” in spring, contrasting with its role as an “ice factory” in winter. In the coastal polynya region, the spatial distribution of phytoplankton bloom roughly corresponds with the ice melt region.
Abstract
Sea ice formation, its transport, and its melting cause the redistribution of heat and salt, which plays an important role in the climate and biogeochemical systems. In the Sea of Okhotsk, a heat and salt flux dataset is created in which such sea ice processes are included, with a spatial resolution of ~12.5 km. The dataset is based on a heat budget analysis using ice concentration, thickness, and drift speed from satellite observations and the ECMWF Interim Re-Analysis (ERA-Interim) data. The salt flux calculation considers both salt supplied to the ocean from sea ice production and freshwater supplied when the ice melts. This dataset will be useful for the validation and boundary conditions of modeling studies. The spatial distribution of the annual fluxes shows a distinct contrast between north and south: significant ocean cooling with salt supply is shown in the northern coastal polynya region, while ocean heating with freshwater supply is shown in the south. This contrast suggests a transport of freshwater and negative heat by ice advection. The annual fluxes also show ocean cooling with freshwater supply in the Kashevarov Bank (KB) region and the central and eastern Sea of Okhotsk, suggesting the effect of warm water advection. In the ice melt season, relatively prominent ice melting is shown in the coastal polynya region, probably due to large solar heating of the upper ocean. This indicates that the polynya works as a “meltwater factory” in spring, contrasting with its role as an “ice factory” in winter. In the coastal polynya region, the spatial distribution of phytoplankton bloom roughly corresponds with the ice melt region.
Abstract
An eddy-permitting state estimate and its adjoint are used to analyze the influence of wind stress perturbations on the transport of the Antarctic Circumpolar Current (ACC) system through Drake Passage. The transport is found to be sensitive to wind stress perturbations both along the ACC path and also in remote regions. The time scale of influence of wind stress perturbations is on the order of 100 days. Regarding spatial scales, the sensitivity of transport to wind stress is relatively smooth in regions of flat topography. In boundary regions and regions with complex topography, however, the sensitivity is enhanced and characterized by shorter length scales of order 100 km. Positive perturbations to the zonal wind stress usually increase the ACC transport, though the wind stress curl is of primary influence where the currents are steered by topography. Highlighting locations where the ACC is especially responsive to air–sea momentum fluxes reveals where an accurate determination of atmospheric winds may best enhance ocean modeling efforts.
Abstract
An eddy-permitting state estimate and its adjoint are used to analyze the influence of wind stress perturbations on the transport of the Antarctic Circumpolar Current (ACC) system through Drake Passage. The transport is found to be sensitive to wind stress perturbations both along the ACC path and also in remote regions. The time scale of influence of wind stress perturbations is on the order of 100 days. Regarding spatial scales, the sensitivity of transport to wind stress is relatively smooth in regions of flat topography. In boundary regions and regions with complex topography, however, the sensitivity is enhanced and characterized by shorter length scales of order 100 km. Positive perturbations to the zonal wind stress usually increase the ACC transport, though the wind stress curl is of primary influence where the currents are steered by topography. Highlighting locations where the ACC is especially responsive to air–sea momentum fluxes reveals where an accurate determination of atmospheric winds may best enhance ocean modeling efforts.
Abstract
High-resolution underway shipboard atmospheric and oceanic observations collected in Drake Passage from 2000 to 2009 are used to examine the spatial scales of turbulent heat fluxes and flux-related state variables. The magnitude of the seasonal cycle of sea surface temperature (SST) south of the Polar Front is found to be twice that north of the front, but the seasonal cycles of the turbulent heat fluxes show no differences on either side of the Polar Front. Frequency spectra of the turbulent heat fluxes and related variables are red, with no identifiable spectral peaks. SST and air temperature are coherent over a range of frequencies corresponding to periods between ~10 h and 2 days, with SST leading air temperature. The spatial decorrelation length scales of the sensible and latent heat fluxes calculated from two-day transects are 65 ± 6 km and 80 ± 6 km, respectively. The scale of the sensible heat flux is consistent with the decorrelation scale for air–sea temperature differences (70 ± 6 km) rather than either SST (153 ± 2 km) or air temperature (138 ± 4 km) alone. These scales are dominated by the Polar Front. When the Polar Front region is excluded, the decorrelation scales are 10–20 km, consistent with the first baroclinic Rossby radius.
These eddy scales are often unrepresented in the available gridded heat flux products. The Drake Passage ship measurements are compared with four recently available gridded turbulent heat flux products: the European Centre for Medium-Range Weather Forecasts high-resolution operational product in support of the Year of Coordinated Observing Modeling and Forcasting Tropical Convection (ECMWF-YOTC), ECMWF interim reanalysis (ERA-Interim), the Drake Passage reanalysis downscaling (DPRD10) regional product, and the objectively analyzed air–sea fluxes (OAFlux). The decorrelation length scales of the air–sea temperature difference, wind speed, and turbulent heat fluxes from these four products are significantly larger than those determined from shipboard measurements.
Abstract
High-resolution underway shipboard atmospheric and oceanic observations collected in Drake Passage from 2000 to 2009 are used to examine the spatial scales of turbulent heat fluxes and flux-related state variables. The magnitude of the seasonal cycle of sea surface temperature (SST) south of the Polar Front is found to be twice that north of the front, but the seasonal cycles of the turbulent heat fluxes show no differences on either side of the Polar Front. Frequency spectra of the turbulent heat fluxes and related variables are red, with no identifiable spectral peaks. SST and air temperature are coherent over a range of frequencies corresponding to periods between ~10 h and 2 days, with SST leading air temperature. The spatial decorrelation length scales of the sensible and latent heat fluxes calculated from two-day transects are 65 ± 6 km and 80 ± 6 km, respectively. The scale of the sensible heat flux is consistent with the decorrelation scale for air–sea temperature differences (70 ± 6 km) rather than either SST (153 ± 2 km) or air temperature (138 ± 4 km) alone. These scales are dominated by the Polar Front. When the Polar Front region is excluded, the decorrelation scales are 10–20 km, consistent with the first baroclinic Rossby radius.
These eddy scales are often unrepresented in the available gridded heat flux products. The Drake Passage ship measurements are compared with four recently available gridded turbulent heat flux products: the European Centre for Medium-Range Weather Forecasts high-resolution operational product in support of the Year of Coordinated Observing Modeling and Forcasting Tropical Convection (ECMWF-YOTC), ECMWF interim reanalysis (ERA-Interim), the Drake Passage reanalysis downscaling (DPRD10) regional product, and the objectively analyzed air–sea fluxes (OAFlux). The decorrelation length scales of the air–sea temperature difference, wind speed, and turbulent heat fluxes from these four products are significantly larger than those determined from shipboard measurements.
Abstract
Components of the atmospheric energy budget from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979–2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the budget is reflected by the analysis increments term, which indicates an energy surplus of 11 W m−2 over the North Polar cap (70°–90°N) and 22 W m−2 over the South Polar cap (70°–90°S). Total atmospheric energy convergence from MERRA compares favorably with previous studies for northern high latitudes but exceeds the available previous estimate for the South Polar cap by 46%. Discrepancies with the Southern Hemisphere energy transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in top of atmosphere (TOA) and surface radiative fluxes are largest in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W m−2 larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W m−2 throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously nonzero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium-Range Weather Forecasts (ERA-I) are found to have better surface parameterizations; however, these reanalyses also disagree with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.
Abstract
Components of the atmospheric energy budget from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979–2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the budget is reflected by the analysis increments term, which indicates an energy surplus of 11 W m−2 over the North Polar cap (70°–90°N) and 22 W m−2 over the South Polar cap (70°–90°S). Total atmospheric energy convergence from MERRA compares favorably with previous studies for northern high latitudes but exceeds the available previous estimate for the South Polar cap by 46%. Discrepancies with the Southern Hemisphere energy transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in top of atmosphere (TOA) and surface radiative fluxes are largest in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W m−2 larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W m−2 throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously nonzero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium-Range Weather Forecasts (ERA-I) are found to have better surface parameterizations; however, these reanalyses also disagree with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.
Abstract
The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables.
The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables.
Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely.
Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.
Abstract
The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables.
The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables.
Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely.
Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.
Abstract
Satellite estimates of surface shortwave radiation (SWR) at high latitudes agree less with ground observations than at other locations; moreover, ground observations at such latitudes are scarce. The comprehensive observations of radiative fluxes made since 1977 by the Department of Energy Atmospheric Radiation Measurement (ARM) Program at the Barrow North Slope of Alaska (NSA) site are unique. They provide an opportunity to revisit accuracy estimates of remote sensing products at these latitudes, which are problematic because the melting of snow/ice and lower solar elevation make the satellite retrievals more difficult.
A newly developed inference scheme for deriving SWR from the Moderate Resolution Imaging Spectroradiometer (MODIS; Terra and Aqua) that utilizes updated information on surface properties over snow and sea ice will be evaluated against these ground measurements and compared with other satellite and model products. Results show that the MODIS-based estimates are in good agreement with observations, with a bias of −5.3 W m−2 (−4% of mean observations) for the downward SWR, a bias of −5.3 W m−2 (−7%) for upward SWR, a bias of 1 (1%) for net SWR, and a bias of −0.001 (0%) for surface albedo. As such, the MODIS estimates of SWR can be useful for numerical model evaluations and for estimating the energy budgets at high latitudes.
Abstract
Satellite estimates of surface shortwave radiation (SWR) at high latitudes agree less with ground observations than at other locations; moreover, ground observations at such latitudes are scarce. The comprehensive observations of radiative fluxes made since 1977 by the Department of Energy Atmospheric Radiation Measurement (ARM) Program at the Barrow North Slope of Alaska (NSA) site are unique. They provide an opportunity to revisit accuracy estimates of remote sensing products at these latitudes, which are problematic because the melting of snow/ice and lower solar elevation make the satellite retrievals more difficult.
A newly developed inference scheme for deriving SWR from the Moderate Resolution Imaging Spectroradiometer (MODIS; Terra and Aqua) that utilizes updated information on surface properties over snow and sea ice will be evaluated against these ground measurements and compared with other satellite and model products. Results show that the MODIS-based estimates are in good agreement with observations, with a bias of −5.3 W m−2 (−4% of mean observations) for the downward SWR, a bias of −5.3 W m−2 (−7%) for upward SWR, a bias of 1 (1%) for net SWR, and a bias of −0.001 (0%) for surface albedo. As such, the MODIS estimates of SWR can be useful for numerical model evaluations and for estimating the energy budgets at high latitudes.
Abstract
The atmospheric moisture budget from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) is evaluated in polar regions for the period 1979–2005 and compared with previous estimates, accumulation syntheses over polar ice sheets, and in situ Arctic precipitation observations. The system is based on a nonspectral background model and utilizes the incremental analysis update scheme. The annual moisture convergence from MERRA for the north polar cap is comparable to previous estimates using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and earlier reanalyses but it is more than 50% larger than MERRA precipitation minus evaporation (P − E) computed from physics output fields. This imbalance is comparable to earlier reanalyses for the Arctic. For the south polar cap, the imbalance is 20%. The MERRA physics output fields are also found to be overly sensitive to changes in the satellite observing system, particularly over data-sparse regions of the Southern Ocean. Comparisons between MERRA and prognostic fields from two contemporary reanalyses yield a spread of values from 6% of the mean over the Antarctic Ice Sheet to 61% over a domain of the Arctic Ocean. These issues highlight continued problems associated with the representation of cold-climate physical processes in global data assimilation models. The distribution of MERRA surface fluxes over the major polar ice sheets emphasizes larger values along the coastal escarpments, which agrees more closely with recent assessments of ice sheet accumulation using regional models. Differences between these results and earlier assessments illustrate a continued ambiguity in the surface moisture flux distribution over Greenland and Antarctica. The higher spatial and temporal resolution as well as the availability of all budget components, including analysis increments in MERRA, offer prospects for an improved representation of the high-latitude water cycle in reanalyses.
Abstract
The atmospheric moisture budget from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) is evaluated in polar regions for the period 1979–2005 and compared with previous estimates, accumulation syntheses over polar ice sheets, and in situ Arctic precipitation observations. The system is based on a nonspectral background model and utilizes the incremental analysis update scheme. The annual moisture convergence from MERRA for the north polar cap is comparable to previous estimates using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and earlier reanalyses but it is more than 50% larger than MERRA precipitation minus evaporation (P − E) computed from physics output fields. This imbalance is comparable to earlier reanalyses for the Arctic. For the south polar cap, the imbalance is 20%. The MERRA physics output fields are also found to be overly sensitive to changes in the satellite observing system, particularly over data-sparse regions of the Southern Ocean. Comparisons between MERRA and prognostic fields from two contemporary reanalyses yield a spread of values from 6% of the mean over the Antarctic Ice Sheet to 61% over a domain of the Arctic Ocean. These issues highlight continued problems associated with the representation of cold-climate physical processes in global data assimilation models. The distribution of MERRA surface fluxes over the major polar ice sheets emphasizes larger values along the coastal escarpments, which agrees more closely with recent assessments of ice sheet accumulation using regional models. Differences between these results and earlier assessments illustrate a continued ambiguity in the surface moisture flux distribution over Greenland and Antarctica. The higher spatial and temporal resolution as well as the availability of all budget components, including analysis increments in MERRA, offer prospects for an improved representation of the high-latitude water cycle in reanalyses.