Browse

You are looking at 1 - 10 of 10,793 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
J. K. Eischeid, M. P. Hoerling, X.-W. Quan, and H. F. Diaz

Abstract

Hawaii’s recent drought is among the most severe on record. Wet-season (November–April) rainfall deficits during 2010–19 rank second lowest among consecutive 10-yr periods since 1900. Various lines of empirical and model evidence indicate a principal natural atmospheric cause for the low rainfall, mostly unrelated to either internal oceanic variability or external forcing. Empirical analysis reveals that traditional factors have favored wetness rather than drought in recent decades, including a cold phase of the Pacific decadal oscillation in sea surface temperatures (SSTs) and a weakened Aleutian low in atmospheric circulation. But correlations of Hawaiian rainfall with patterns of Pacific sea level pressure and SSTs that explained a majority of its variability during the twentieth century collapsed in the twenty-first century. Atmospheric model simulations indicate a forced decadal signal (2010–19 vs 1981–2000) of Aleutian low weakening, consistent with recent observed North Pacific circulation. However, model ensemble means do not generate reduced Hawaiian rainfall, indicating that neither oceanic boundary forcing nor a weakened Aleutian low caused recent low Hawaiian rainfall. Additional atmospheric model experiments explored the role of anthropogenic forcing. These reveal a strong sensitivity of Hawaiian rainfall to details of long-term SST change patterns. Under an assumption that anthropogenic forcing drives zonally uniform SST warming, Hawaiian rainfall declines, with a range of 3%–9% among three models. Under an assumption that anthropogenic forcing also increases the equatorial Pacific zonal SST gradient, Hawaiian rainfall increases 2%–6%. Large spread among ensemble members indicates that no forced signals are detectable.

Restricted access
Chuan-Chieh Chang, Zhuo Wang, John Walsh, and Patrick J. Stoll

Abstract

Polar lows (PLs) are intense maritime mesoscale cyclones that can pose hazards to coastal communities and marine operation in the Arctic. This study examines the impacts of sudden stratospheric warmings (SSWs) on PL activity in the subarctic North Atlantic. The 20 days following SSWs are characterized by tropospheric circulation anomalies resembling the negative phase of the North Atlantic Oscillation. PL activity decreases significantly over the Labrador Sea, which can be attributed to the infrequent occurrence of low static stability and strong environmental baroclinicity, as well as reduced surface turbulent heat fluxes. These results suggest that a skillful prediction of SSWs can improve the extended-range forecast of PL activity over the Labrador Sea. For the Nordic seas, the results imply that the spatial structure of an SSW event is important for the PL modulation through different tropospheric circulation patterns. Situations with increased PL frequency in the Nordic seas are characterized by SSWs centered close to northern Greenland occurring over a smaller area, and a tropospheric response featuring enhanced cold-air outbreaks over the Norwegian Sea. Conversely, PL activity is suppressed over the Nordic seas when the SSW favors the formation of a tropospheric anticyclone above Greenland and Scandinavia.

Significance Statement

This study investigates the relationships between polar lows (PLs) and sudden stratospheric warmings (SSWs) over the subarctic North Atlantic. A better understanding of the effect of SSWs on PL development has the potential to improve extended-range forecasts of PLs. It is shown that SSWs are responsible for the significantly suppressed regional PL activity over the Labrador Sea, suggesting that SSWs can serve as a predictor for the extended-range forecast of PLs over this region. Following SSW events, the thermodynamic state of atmosphere becomes more stable over the Labrador Sea and hinders the convective development of PLs. For the northern Nordic seas, the impacts of SSWs on PL activity are sensitive to the spatial structure of stratospheric warming.

Restricted access
Victor M. Torres and Chris D. Thorncroft

Abstract

A review of the mean state over the tropical eastern Pacific (EPAC) and the Intra-Americas Sea (IAS) region is provided to assess the characteristics that impact the development and genesis of easterly waves (EWs). The EPAC–IAS region is characterized by complex topography, the Western Hemisphere warm pool, the ITCZ at 10°N, and predominant deep convection over the Panama Bight around 9°N, 78°W. A prominent easterly jet at 600 hPa of about 5.5 m s−1, is oriented approximately parallel to the Mexican coast. The jet is characterized by a strip of high potential vorticity (PV) on the cyclonic shear side and low PV on the anticyclonic side. This distribution of PV satisfies the necessary conditions for barotropic instability: the Charney–Stern condition, as well as the Fjørtoft condition. Together these conditions suggest the potential for barotropic growth of EWs over the EPAC region. The mean high PV region over the EPAC is created in association with two different populations of cloud/convection systems: stratiform and shallow, with the former being key for the creation of positive PV anomalies at midlevels. Evidence is also provided that suggests that the low PV region arises in association with sources of negative PV anomalies over the Sierra Madre region likely resulting from frequent dry convection. This is a key and novel result that is basic for the setting up of a negative meridional PV gradient and fundamental for the Charney–Stern condition associated with barotropic instability and growth of EWs.

Significance Statement

The tropical eastern Pacific is influenced by synoptic easterly waves that impact daily weather in the region and can trigger tropical cyclones. This research explores the nature of a midlevel jet that supports the development of easterly waves in this basin. The jet is established in association with moist convection over the ocean that leads to a midlevel potential vorticity maximum equatorward of the jet and, frequent dry convection over the Mexican Sierra Madre region that leads to a low-level potential vorticity minimum poleward of the jet. This finding highlights the need to better understand, and ultimately predict, these potential vorticity sources in order to better understand and predict the nature of the easterly wave developments in this region.

Restricted access
Natalia Pilguj, Mateusz Taszarek, John T. Allen, and Kimberly A. Hoogewind

Abstract

In this work, long-term trends in convective parameters are compared between ERA5, MERRA-2, and observed rawinsonde profiles over Europe and the United States including surrounding areas. A 39-yr record (1980–2018) with 2.07 million quality-controlled measurements from 84 stations at 0000 and 1200 UTC is used for the comparison, along with collocated reanalysis profiles. Overall, reanalyses provide signals that are similar to observations, but ERA5 features lower biases. Over Europe, agreement in the trend signal between rawinsondes and the reanalyses is better, particularly with respect to instability (lifted index), low-level moisture (mixing ratio), and 0–3-km lapse rates as compared with mixed trends in the United States. However, consistent signals for all three datasets and both domains are found for robust increases in convective inhibition (CIN), downdraft CAPE (DCAPE), and decreases in mean 0–4-km relative humidity. Despite differing trends between continents, the reanalyses capture well changes in 0–6-km wind shear and 1–3-km mean wind with modest increases in the United States and decreases in Europe. However, these changes are mostly insignificant. All datasets indicate consistent warming of almost the entire tropospheric profile, which over Europe is the fastest near ground whereas across the Great Plains it is generally between 2 and 3 km above ground level, thus contributing to increases in CIN. Results of this work show the importance of intercomparing trends between various datasets, as the limitations associated with one reanalysis or observations may lead to uncertainties and lower our confidence in how parameters are changing over time.

Open access
Chiyu Zhao, Xin Geng, Wenjun Zhang, and Li Qi

Abstract

Previous studies have demonstrated that the Atlantic multidecadal oscillation (AMO) could affect El Niño–Southern Oscillation (ENSO) through thermocline adjustment, with a stronger ENSO sea surface temperature (SST) amplitude during a negative AMO phase than during a positive phase. In this study, we find that the ENSO atmospheric anomaly amplitudes in the tropical Pacific during different AMO phases are not necessarily consistent with these ENSO SST changes. For El Niño episodes, the low-level wind and precipitation anomalies over the tropical Pacific in the boreal winter are more pronounced during the negative AMO phase than during the positive phase, corresponding well to the stronger SST anomalies. However, La Niña events during the negative AMO phase are accompanied by weaker atmospheric anomalies in the tropical Pacific, although their SST anomalies are stronger than those during the positive phase. We suggest that this mismatch between La Niña SST and atmospheric anomalies can be largely attributed to AMO decadal modulation. A positive AMO favors intensified trade winds and weakened precipitation in the central tropical Pacific by modifying Walker circulation. Therefore, when La Niña coincides with a positive AMO, the low-level easterly and negative precipitation anomalies are superimposed, which gives rise to stronger atmospheric perturbations. In contrast, under a negative AMO background, the atmospheric anomalies induced by La Niña anomalous SST are partly counteracted by the AMO remote decadal modulation, thereby resulting in weaker anomaly amplitudes. Here, we highlight that AMO decadal forcing needs to be considered when investigating ENSO atmospheric variabilities and related regional climate impacts.

Restricted access
Julio C. Marín, Deniz Bozkurt, and Bradford S. Barrett

Abstract

We analyze the seasonal evolution and trends of atmospheric blocking from 1979 to 2018 using a geopotential-height-based method over two domains, one located to the west (150°–90°W, 50°–70°S) and the other over and to the east (90°–30°W, 50°–70°S) of the Antarctic Peninsula. Spatial patterns of geopotential heights on days with blocking feature well-defined ridge axes over and west of much of South America, and days with the most extreme blocking (above the 99th percentile) showed upper-tropospheric ridge and cutoff low features that have been associated with extreme weather patterns. Blocking days were found to be more frequent in the first half of the period (1979–98) than the second (1999–2018) in all seasons in the west domain, whereas they seem to be more common over the eastern (peninsula) domain in 1999–2018 for austral winter, spring, and autumn, although these differences were not statistically significant. West of the Antarctic Peninsula, blocking days occur most frequently when the Antarctic Oscillation (AAO) is negative, whereas they are more frequent over the peninsula when the AAO is positive. We propose that our blocking index can be used to indicate atmospheric blocking affecting the Antarctic Peninsula, similar to how the Greenland blocking index has been used to diagnose blocking, its trends, and impacts over the Arctic.

Restricted access
Veeshan Narinesingh, James F. Booth, and Yi Ming

Abstract

This study examines the climatology and dynamics of atmospheric blocking, and the general circulation features that influence blocks in GFDL’s atmosphere-only (AM4) and coupled atmosphere–ocean (CM4) comprehensive models. We compare AM4 and CM4 with reanalysis, focusing on winter in the Northern Hemisphere. Both models generate the correct blocking climatology and planetary-scale signatures of the stationary wave. However, at regional scales some biases exist. In the eastern Pacific and over western North America, both models generate excessive blocking frequency and too strong of a stationary wave. In the Atlantic, the models generate too little blocking and a weakened stationary wave. A block-centered compositing analysis of block-onset dynamics reveals that the models 1) produce realistic patterns of high-frequency (1–6-day) eddy forcing and 2) capture the notable differences in the 500-hPa geopotential height field between Pacific and Atlantic blocking. However, the models fail to reproduce stronger wave activity flux convergence in the Atlantic compared to the Pacific. Overall, biases in the blocking climatology in terms of location, frequency, duration, and area are quite similar between AM4 and CM4 despite the models having large differences in sea surface temperatures and climatological zonal circulation. This could suggest that other factors could be more dominant in generating blocking biases for these GCMs.

Significance Statement

Atmospheric blocks are persistent high pressure systems that can lead to hazardous weather. Historically, climate models have had trouble capturing blocks, but recent changes in the models might lead to improvements. As such, the work herein investigates the spatial distribution, prevalence, duration, size, and dynamics of wintertime blocking in recent NOAA climate models. Overall, these models capture the long-term-average spatial pattern of blocking, and properly reproduce key dynamical features. However, the models produce too much blocking in the western United States, and too little over the northern Atlantic Ocean and Europe. These blocking biases are consistent with atmospheric stationary waves biases, but not jet stream bias. This downplays the role of jet biases in the models being responsible for blocking biases.

Open access
Yanbo Nie and Jianqi Sun

Abstract

The interannual variability in summer precipitation intraseasonal oscillation intensity over southwest China (SWC) is investigated in this study. The results indicate that the 7–20-day period dominates the intraseasonal variability in summer SWC precipitation. The leading mode of summer SWC precipitation 7–20-day oscillation intensity (SPOI) is a north–south dipole pattern with prominent interannual variability. The atmospheric circulation anomalies from both tropics and mid- to high latitudes are responsible for the interannual variability in the dipole pattern. In the tropics, an enhanced local Hadley cell and an anomalous anticyclone over southern China and the northwest Pacific contribute to the north-positive–south-negative pattern of SPOI by inducing moisture convergence (divergence) over northern (southern) SWC in the background state. In the mid- to high latitudes, the 7–20-day Rossby wave trains along the subtropical jet are crucial for the 7–20-day precipitation over northern SWC. Further analyses suggest that the sea surface temperature (SST) anomalies over the Maritime Continent (MC) and the North Atlantic (NA) are associated with the SPOI dipole pattern. The MC SST warming causes convection anomalies over the tropical Indo-Pacific, consequently triggering a Matsuno–Gill-type atmospheric response conducive to the north-positive–south-negative pattern of SPOI. The NA SST tripole triggers a Rossby wave train across Eurasia that strengthens the East Asian westerly jet and enhances 7–20-day atmospheric variability, consequently favoring the variability of 7–20-day precipitation over northern SWC. Diagnoses of moisture and vorticity budgets further indicate the importance of the interaction between intraseasonal fluctuations and atmospheric background in the formation of the north–south difference in 7–20-day precipitation variability over SWC.

Restricted access
Shuyu Wang, Xiaohui Ma, Guangzhi Xu, Shenghui Zhou, Ping Chang, and Lixin Wu

Abstract

Atmospheric rivers (ARs) originating near the Kuroshio Extension and the Hawaiian Islands and making landfall onto the west coast of North America in the North Pacific in the boreal winter season (October–March) are detected and tracked using ERA5 reanalysis (2000–19), and are classified as Kuroshio Extension (KE) and Pineapple Express (PE) ARs, respectively. Compared with KE ARs, PE ARs are longer and wider with higher intensity and shorter duration. Although the total occurrence of PE ARs is lower, the occurrence of extreme ARs is substantially higher than KE ARs. PE (KE) ARs are oriented more meridionally (zonally) with more equatorward (poleward) landfalling positions and associated precipitation. The genesis, development, and decay of KE and PE ARs and their relationships with extratropical cyclones (ECs) are investigated. Along- and cross-section analyses show that PE ARs are associated with stronger, deeper low pressure systems with closer tropical connections. Compared with KE ARs, PE ARs originate from well-developed ECs with stronger southward intrusion of cold fronts, forming closer to the ECs’ centers along the sharp temperature/pressure gradient zone. They are accompanied by enhanced and deeper vertical motion and stronger low-level wind. The intensity difference between KE and PE ARs is largely determined by the orientation and the strengths of temperature/pressure gradients of associated ECs rather than the intensity of associated ECs themselves. Furthermore, the evolution of ARs and ECs is not always synchronized, suggesting complicated AR and EC interactions that require further investigations.

Open access
Weiguo Wang, Hongyi Li, Zeming Xie, Xiaofan Zhu, Linhong Xiao, Xiaohua Hao, and Jian Wang

Abstract

Atmospheric water vapor plays a key role in the water cycle, especially on the Tibetan Plateau, where precipitation is an invaluable contributor to water resources. To better understand which water vapor source areas influence precipitation on the northeastern Tibetan Plateau (NETP), we applied the flexible particle dispersion method (FLEXPART) to simulate water vapor trajectories and water vapor source contribution related to precipitation events during the snow season from 1979 to 2017 on the NETP. The results show that continental water vapor source areas contributed 92.33% of the water vapor to precipitation events on the NETP, which was obviously greater than the water vapor contribution from oceanic areas. One key continental water vapor source area, the Tibetan Plateau without the study area, contributed 66.13% of the water vapor to the precipitation, and central Asia supplied 8.69%, ranking second. Comparing the distributions of the water vapor contributions to extensive and regional precipitation events revealed that the only difference between extensive and regional precipitation events is in the magnitudes of the water vapor contributions, and the spatial distributions of the water vapor contributions are extremely similar. Central and southern China obviously supplied more water vapor to extensive precipitation events than to regional precipitation events. These results help us better understand the recent drastic precipitation changes on the NETP.

Significance Statement

We sought to understand how water vapor influences precipitation over the northeastern Tibetan Plateau and which water vapor source areas play a key role in the water vapor supply. Therefore, we applied a numerical model to investigate the relationship between water vapor and precipitation from 1979 to 2017 during the snow season. Continental water vapor source areas contributed considerably more water vapor than oceanic water vapor source areas. The most important continental water vapor contributor was the Tibetan Plateau without the northeastern Tibetan Plateau area, and the second highest contributor was central Asia. Future work should focus on how water vapor impacts the precipitation changes in this wetter and warming area.

Restricted access