Browse
Abstract
Ocean surface currents introduce variations into the surface wind stress that can change the component of the stress aligned with the thermal wind shear at fronts. This modifies the Ekman buoyancy flux, such that the current feedback on the stress tends to generate an effective flux of buoyancy and potential vorticity to the mixed layer. Scaling arguments and idealized simulations resolving both mesoscale and submesoscale turbulence suggest that this pathway for air–sea interaction can be important both locally at individual submesoscale fronts with strong surface currents—where it can introduce equivalent advective heat fluxes exceeding several hundred watts per square meter—and in the spatial mean where it reduces the integrated Ekman buoyancy flux by approximately 50%. The accompanying source of surface potential vorticity injection suggests that at some fronts the current feedback modification of the Ekman buoyancy flux may be significant in terms of both submesoscale dynamics and boundary layer energetics, with an implied modification of symmetric instability growth rates and dissipation that scales similarly to the energy lost through the negative wind work generated by the current feedback. This provides an example of how the shift of dynamical regimes into the submesoscale may promote the importance of air–sea interaction mechanisms that differ from those most active at larger scale.
Abstract
Ocean surface currents introduce variations into the surface wind stress that can change the component of the stress aligned with the thermal wind shear at fronts. This modifies the Ekman buoyancy flux, such that the current feedback on the stress tends to generate an effective flux of buoyancy and potential vorticity to the mixed layer. Scaling arguments and idealized simulations resolving both mesoscale and submesoscale turbulence suggest that this pathway for air–sea interaction can be important both locally at individual submesoscale fronts with strong surface currents—where it can introduce equivalent advective heat fluxes exceeding several hundred watts per square meter—and in the spatial mean where it reduces the integrated Ekman buoyancy flux by approximately 50%. The accompanying source of surface potential vorticity injection suggests that at some fronts the current feedback modification of the Ekman buoyancy flux may be significant in terms of both submesoscale dynamics and boundary layer energetics, with an implied modification of symmetric instability growth rates and dissipation that scales similarly to the energy lost through the negative wind work generated by the current feedback. This provides an example of how the shift of dynamical regimes into the submesoscale may promote the importance of air–sea interaction mechanisms that differ from those most active at larger scale.
Abstract
Based on the conditional nonlinear optimal perturbation for boundary condition method and Regional Ocean Modeling System (ROMS), this study investigates the influence of wind stress uncertainty on predicting the short-term state transitions of the Kuroshio Extension (KE). The optimal time-dependent wind stress errors that lead to maximum prediction errors are obtained for two KE stable-to-unstable and two reverse transitions, which exhibit local multieddies structures with decreasing magnitude as the end time of prediction approaches. The optimal boundary errors initially induce small oceanic errors through Ekman pumping. Subsequently, these errors grow in magnitude as oceanic internal processes take effect, which exerts significant influences on the short-term prediction of the KE state transition process. Specifically, during stable-to-unstable (unstable-to-stable) transitions, the growing error induces an overestimation (underestimation) of the meridional sea surface height gradient across the KE axis, leading to the predicted KE state being more (less) stable. Furthermore, the dynamics mechanism analysis indicates that barotropic instability is crucial for the error growth in the prediction of both the stable-to-unstable and the reverse transition processes due to the horizontal shear of flow field. But work generated by wind stress error plays a more important role in the prediction of the unstable-to-stable transitions because of the synergistic effect of strong wind stress error and strong oceanic error. Eventually, the sensitive areas have been identified based on the optimal boundary errors. Reducing wind stress errors in sensitive areas can significantly improve prediction skills, offering theoretical guidance for devising observational strategies.
Abstract
Based on the conditional nonlinear optimal perturbation for boundary condition method and Regional Ocean Modeling System (ROMS), this study investigates the influence of wind stress uncertainty on predicting the short-term state transitions of the Kuroshio Extension (KE). The optimal time-dependent wind stress errors that lead to maximum prediction errors are obtained for two KE stable-to-unstable and two reverse transitions, which exhibit local multieddies structures with decreasing magnitude as the end time of prediction approaches. The optimal boundary errors initially induce small oceanic errors through Ekman pumping. Subsequently, these errors grow in magnitude as oceanic internal processes take effect, which exerts significant influences on the short-term prediction of the KE state transition process. Specifically, during stable-to-unstable (unstable-to-stable) transitions, the growing error induces an overestimation (underestimation) of the meridional sea surface height gradient across the KE axis, leading to the predicted KE state being more (less) stable. Furthermore, the dynamics mechanism analysis indicates that barotropic instability is crucial for the error growth in the prediction of both the stable-to-unstable and the reverse transition processes due to the horizontal shear of flow field. But work generated by wind stress error plays a more important role in the prediction of the unstable-to-stable transitions because of the synergistic effect of strong wind stress error and strong oceanic error. Eventually, the sensitive areas have been identified based on the optimal boundary errors. Reducing wind stress errors in sensitive areas can significantly improve prediction skills, offering theoretical guidance for devising observational strategies.
Abstract
The mechanisms that control the export of freshwater from the East Greenland Current, in both liquid and solid form, are explored using an idealized numerical model and scaling theory. A regional, coupled ocean/sea ice model is applied to a series of calculations in which key parameters are varied and the scaling theory is used to interpret the model results. The offshore ice flux, occurring in late winter, is driven primarily by internal stresses and is most sensitive to the thickness of sea ice on the shelf coming out of Fram Strait and the strength of along-shore winds over the shelf. The offshore liquid freshwater flux is achieved by eddy fluxes in late summer while there is an onshore liquid freshwater flux in winter due to the ice-ocean stress, resulting in only weak annual mean flux. The scaling theory identifies the key nondimensional parameters that control the behavior and reproduces the general parameter dependence found in the numerical model. Climate models predict that winds will increase and ice export from the Arctic will decrease in the future, both of which will lead to a decrease in the offshore flux of sea ice, while the influence on liquid freshwater may increase or decrease, depending on the relative changes in the onshore Ekman transport and offshore eddy fluxes. Additional processes that have not been considered here, such as more complex topography and synoptic wind events, may also contribute to cross shelf exchange.
Abstract
The mechanisms that control the export of freshwater from the East Greenland Current, in both liquid and solid form, are explored using an idealized numerical model and scaling theory. A regional, coupled ocean/sea ice model is applied to a series of calculations in which key parameters are varied and the scaling theory is used to interpret the model results. The offshore ice flux, occurring in late winter, is driven primarily by internal stresses and is most sensitive to the thickness of sea ice on the shelf coming out of Fram Strait and the strength of along-shore winds over the shelf. The offshore liquid freshwater flux is achieved by eddy fluxes in late summer while there is an onshore liquid freshwater flux in winter due to the ice-ocean stress, resulting in only weak annual mean flux. The scaling theory identifies the key nondimensional parameters that control the behavior and reproduces the general parameter dependence found in the numerical model. Climate models predict that winds will increase and ice export from the Arctic will decrease in the future, both of which will lead to a decrease in the offshore flux of sea ice, while the influence on liquid freshwater may increase or decrease, depending on the relative changes in the onshore Ekman transport and offshore eddy fluxes. Additional processes that have not been considered here, such as more complex topography and synoptic wind events, may also contribute to cross shelf exchange.
Abstract
Accurate parameterizations of eddy fluxes across prograde, buoyant shelf and slope currents are crucial to faithful predictions of the heat transfer and water mass transformations in high-latitude ocean environments in ocean climate models. In this work we evaluate several parameterization schemes of eddy buoyancy fluxes in predicting the mean state of prograde current systems using a set of coarse-resolution non-eddying simulations, the solutions of which are compared against those of fine-resolution eddy-resolving simulations with nearly identical model configurations. It is found that coarse-resolution simulations employing the energetically-constrained GEOMETRIC parameterization can accurately reconstruct the prograde mean flow state, provided that the suppression of eddy buoyancy diffusivity over the continental slope is accounted for. The prognostic subgrid-scale eddy energy budget in the GEOMETRIC parameterization scheme effectively captures the varying trend of the domain-wide eddy energy level in response to environmental changes, even though the energy budget is not specifically designed for a sloping-bottomed ocean. Local errors of the predicted eddy energy are present but do not compromise the predictive skill of the GEOMETRIC parameterization for prograde current systems. This work lays a foundation for improving the representation of prograde current systems in coarse-resolution ocean climate models.
Abstract
Accurate parameterizations of eddy fluxes across prograde, buoyant shelf and slope currents are crucial to faithful predictions of the heat transfer and water mass transformations in high-latitude ocean environments in ocean climate models. In this work we evaluate several parameterization schemes of eddy buoyancy fluxes in predicting the mean state of prograde current systems using a set of coarse-resolution non-eddying simulations, the solutions of which are compared against those of fine-resolution eddy-resolving simulations with nearly identical model configurations. It is found that coarse-resolution simulations employing the energetically-constrained GEOMETRIC parameterization can accurately reconstruct the prograde mean flow state, provided that the suppression of eddy buoyancy diffusivity over the continental slope is accounted for. The prognostic subgrid-scale eddy energy budget in the GEOMETRIC parameterization scheme effectively captures the varying trend of the domain-wide eddy energy level in response to environmental changes, even though the energy budget is not specifically designed for a sloping-bottomed ocean. Local errors of the predicted eddy energy are present but do not compromise the predictive skill of the GEOMETRIC parameterization for prograde current systems. This work lays a foundation for improving the representation of prograde current systems in coarse-resolution ocean climate models.
Abstract
Satellite observation of sea surface height (SSH) may soon have sufficient accuracy and resolution to map geostrophic currents in Lake Superior. A dynamic atmosphere correction will be needed to remove SSH variance due to basin-wide seiching. Here, the dynamics of rotating barotropic gravity modes are examined using numerical models and lake-level gauges. Gravity modes explain 94% of SSH variance in a general circulation model, and evolve as forced, damped oscillators. These modes have significant SSH, but negligible kinetic energy (2 J m−2) and dissipation rates (0.01 W m−2) relative to other motions in Lake Superior. Removing gravity modes from instantaneous SSH allows geostrophic currents to be accurately computed. Complex empirical orthogonal functions (CEOFs) from 50 years of data at 8 lake-level gauges show patterns consistent with the first two gravity modes. The frequency spectra of these CEOFs are consistent with forced, damped oscillators with natural frequencies of 3.05 and 4.91 cycles per day and decay time scales of 4.5 and 1.0 days. Modal amplitudes from the general circulation model and lake-level gauges are 80% coherent at 1 cpd, but only 50% coherent at 3 cpd, indicating that the atmospheric reanalysis used to force the general circulation model is not accurate at the high natural frequencies of the gravity modes. The results indicate that a dynamic atmosphere correction should combine modeled gravity modes below 1 cpd and observed mode-1 and 2 amplitudes (from lake-level gauges) at higher frequencies. An inverted barometer correction is also recommended to account for low-frequency atmospheric pressure gradients that do not project onto gravity modes.
Abstract
Satellite observation of sea surface height (SSH) may soon have sufficient accuracy and resolution to map geostrophic currents in Lake Superior. A dynamic atmosphere correction will be needed to remove SSH variance due to basin-wide seiching. Here, the dynamics of rotating barotropic gravity modes are examined using numerical models and lake-level gauges. Gravity modes explain 94% of SSH variance in a general circulation model, and evolve as forced, damped oscillators. These modes have significant SSH, but negligible kinetic energy (2 J m−2) and dissipation rates (0.01 W m−2) relative to other motions in Lake Superior. Removing gravity modes from instantaneous SSH allows geostrophic currents to be accurately computed. Complex empirical orthogonal functions (CEOFs) from 50 years of data at 8 lake-level gauges show patterns consistent with the first two gravity modes. The frequency spectra of these CEOFs are consistent with forced, damped oscillators with natural frequencies of 3.05 and 4.91 cycles per day and decay time scales of 4.5 and 1.0 days. Modal amplitudes from the general circulation model and lake-level gauges are 80% coherent at 1 cpd, but only 50% coherent at 3 cpd, indicating that the atmospheric reanalysis used to force the general circulation model is not accurate at the high natural frequencies of the gravity modes. The results indicate that a dynamic atmosphere correction should combine modeled gravity modes below 1 cpd and observed mode-1 and 2 amplitudes (from lake-level gauges) at higher frequencies. An inverted barometer correction is also recommended to account for low-frequency atmospheric pressure gradients that do not project onto gravity modes.
Abstract
Six profiling floats measured water-mass properties (T, S), horizontal velocities (u, υ), and microstructure thermal-variance dissipation rates χT in the upper ∼1 km of the Iceland and Irminger Basins in the eastern subpolar North Atlantic from June 2019 to April 2021. The floats drifted into slope boundary currents to travel counterclockwise around the basins. Pairs of velocity profiles half an inertial period apart were collected every 7–14 days. These half-inertial-period pairs are separated into subinertial eddy (sum) and inertial/semidiurnal (difference) motions. Eddy flow speeds are ∼O(0.1) m s−1 in the upper 400 m, diminishing to ∼O(0.01) m s−1 by ∼800-m depth. In late summer through early spring, near-inertial motions are energized in the surface layer and permanent pycnocline to at least 800-m depth almost simultaneously (within the 14-day temporal resolution), suggesting rapid transformation of large-horizontal-scale surface-layer inertial oscillations into near-inertial internal waves with high vertical group velocities through interactions with eddy vorticity gradients (effective β). During the same period, internal-wave vertical shear variance was 2–5 times canonical midlatitude magnitudes and dominantly clockwise-with-depth (downward energy propagation). In late spring and early summer, shear levels are comparable to canonical midlatitude values and dominantly counterclockwise-with-depth (upward energy propagation), particularly over major topographic ridges. Turbulent diapycnal diffusivities K ∼ O(10−4) m2 s−1 are an order of magnitude larger than canonical midlatitude values. Depth-averaged (10–1000 m) diffusivities exhibit factor-of-3 month-by-month variability with minima in early August.
Abstract
Six profiling floats measured water-mass properties (T, S), horizontal velocities (u, υ), and microstructure thermal-variance dissipation rates χT in the upper ∼1 km of the Iceland and Irminger Basins in the eastern subpolar North Atlantic from June 2019 to April 2021. The floats drifted into slope boundary currents to travel counterclockwise around the basins. Pairs of velocity profiles half an inertial period apart were collected every 7–14 days. These half-inertial-period pairs are separated into subinertial eddy (sum) and inertial/semidiurnal (difference) motions. Eddy flow speeds are ∼O(0.1) m s−1 in the upper 400 m, diminishing to ∼O(0.01) m s−1 by ∼800-m depth. In late summer through early spring, near-inertial motions are energized in the surface layer and permanent pycnocline to at least 800-m depth almost simultaneously (within the 14-day temporal resolution), suggesting rapid transformation of large-horizontal-scale surface-layer inertial oscillations into near-inertial internal waves with high vertical group velocities through interactions with eddy vorticity gradients (effective β). During the same period, internal-wave vertical shear variance was 2–5 times canonical midlatitude magnitudes and dominantly clockwise-with-depth (downward energy propagation). In late spring and early summer, shear levels are comparable to canonical midlatitude values and dominantly counterclockwise-with-depth (upward energy propagation), particularly over major topographic ridges. Turbulent diapycnal diffusivities K ∼ O(10−4) m2 s−1 are an order of magnitude larger than canonical midlatitude values. Depth-averaged (10–1000 m) diffusivities exhibit factor-of-3 month-by-month variability with minima in early August.
Abstract
Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely proportional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and deep mixed layers in winter, especially in mode water formation regions.
Significance Statement
This study examines how instabilities in the surface layer of the ocean bring interior water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxygen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean models and improve our understanding of the marine ecosystem and how the ocean mediates climate change.
Abstract
Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely proportional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and deep mixed layers in winter, especially in mode water formation regions.
Significance Statement
This study examines how instabilities in the surface layer of the ocean bring interior water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxygen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean models and improve our understanding of the marine ecosystem and how the ocean mediates climate change.
Abstract
Observations of currents and temperatures from four moorings deployed around the deep slope (~2500 m) of Caiwei Guyot in the Pacific Prime Crust Zone were utilized to investigate topographically trapped waves at low-latitude seamounts. Contrasting with commonly reported persistent diurnal seamount-trapped wave cases at mid- and high-latitudes, the subinertial variability in deep currents and temperatures at the slope of Caiwei Guyot was primarily characterized by two distinct lower frequency bands, i.e., 13–24 and 3.3–4.7 days. These subinertial variabilities are interpreted as intermittent seamount-trapped waves and topographic Rossby waves (TRWs). During certain time periods, the observations include key signatures of seamount-trapped waves, such as near-opposite phases of azimuthal velocity (and temperature) on opposite flanks of the seamount, and patterns of temporal current rotation consistent with counter-rotating cells of horizontal current propagating counterclockwise around the seamount. After comparing these observations to idealized seamount-trapped wave solutions, we conclude that the 13–24-day (3.3–4.7-day) energy is mainly due to radial-vertical mode 5 (3) for azimuthal wavenumber 1 (3). Sometimes the subinertial energy remained pronounced at only one flank of the seamount, primarily explained as TRWs with 192–379 m vertical trapping scale and 14–28 km wavelength. Upper-layer mesoscale perturbations might provide energy for deep seamount-trapped waves and TRWs. This study highlights the role of topographically trapped waves in modulating the deep circulation at low-latitude seamounts.
Abstract
Observations of currents and temperatures from four moorings deployed around the deep slope (~2500 m) of Caiwei Guyot in the Pacific Prime Crust Zone were utilized to investigate topographically trapped waves at low-latitude seamounts. Contrasting with commonly reported persistent diurnal seamount-trapped wave cases at mid- and high-latitudes, the subinertial variability in deep currents and temperatures at the slope of Caiwei Guyot was primarily characterized by two distinct lower frequency bands, i.e., 13–24 and 3.3–4.7 days. These subinertial variabilities are interpreted as intermittent seamount-trapped waves and topographic Rossby waves (TRWs). During certain time periods, the observations include key signatures of seamount-trapped waves, such as near-opposite phases of azimuthal velocity (and temperature) on opposite flanks of the seamount, and patterns of temporal current rotation consistent with counter-rotating cells of horizontal current propagating counterclockwise around the seamount. After comparing these observations to idealized seamount-trapped wave solutions, we conclude that the 13–24-day (3.3–4.7-day) energy is mainly due to radial-vertical mode 5 (3) for azimuthal wavenumber 1 (3). Sometimes the subinertial energy remained pronounced at only one flank of the seamount, primarily explained as TRWs with 192–379 m vertical trapping scale and 14–28 km wavelength. Upper-layer mesoscale perturbations might provide energy for deep seamount-trapped waves and TRWs. This study highlights the role of topographically trapped waves in modulating the deep circulation at low-latitude seamounts.
Abstract
This study investigates three-dimensional semidiurnal internal tide (IT) energetics in the vicinity of La Jolla Canyon, a steep shelf submarine canyon off the Southern California coast, with the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) numerical simulator. Numerical simulations show vertical structure and temporal phasing consistent with detailed field observations. ITs induce large (approximately 34 m from peak to peak) isotherm displacements and net onshore IT energy flux up to 200 W m−1. Although the net IT energy flux is onshore, the steep supercritical slope around the canyon results in strong reflection. The model provides the full life span of internal tides around the canyon, including internal tide generation, propagation, and dissipation. ITs propagate into the canyon from the south and are reflected back toward offshore from the canyon’s north side. In the inner part of the canyon, elevated mixing occurs in the middle layer due to an interaction between incident mode-1 ITs and reflected higher-mode ITs. The magnitude of IT flux, generation, and dissipation on the south side of the canyon are higher than those on the north side. An interference pattern in horizontal kinetic energy and available potential energy with a scale of approximately 20–50 km arises due to low-mode wave reflections. Our results provide new insight into IT dynamics associated with a small-scale canyon topography.
Significance Statement
Internal waves play an important role in ocean circulations and ecosystems. In particular, internal waves with frequencies of tides, known as internal tides, strongly enhance energy, heat, and mass transport in coastal oceans. This study presents internal tide dynamics in La Jolla Canyon, California, using a high-resolution numerical model. Model results show energy convergence in the canyon leading to internal tide energy dissipation and mixing. Some parts of internal tide energy reflect back offshore resulting in standing internal waves off California. This study provides new insights into internal tide dynamics and energy budgets in submarine canyons.
Abstract
This study investigates three-dimensional semidiurnal internal tide (IT) energetics in the vicinity of La Jolla Canyon, a steep shelf submarine canyon off the Southern California coast, with the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) numerical simulator. Numerical simulations show vertical structure and temporal phasing consistent with detailed field observations. ITs induce large (approximately 34 m from peak to peak) isotherm displacements and net onshore IT energy flux up to 200 W m−1. Although the net IT energy flux is onshore, the steep supercritical slope around the canyon results in strong reflection. The model provides the full life span of internal tides around the canyon, including internal tide generation, propagation, and dissipation. ITs propagate into the canyon from the south and are reflected back toward offshore from the canyon’s north side. In the inner part of the canyon, elevated mixing occurs in the middle layer due to an interaction between incident mode-1 ITs and reflected higher-mode ITs. The magnitude of IT flux, generation, and dissipation on the south side of the canyon are higher than those on the north side. An interference pattern in horizontal kinetic energy and available potential energy with a scale of approximately 20–50 km arises due to low-mode wave reflections. Our results provide new insight into IT dynamics associated with a small-scale canyon topography.
Significance Statement
Internal waves play an important role in ocean circulations and ecosystems. In particular, internal waves with frequencies of tides, known as internal tides, strongly enhance energy, heat, and mass transport in coastal oceans. This study presents internal tide dynamics in La Jolla Canyon, California, using a high-resolution numerical model. Model results show energy convergence in the canyon leading to internal tide energy dissipation and mixing. Some parts of internal tide energy reflect back offshore resulting in standing internal waves off California. This study provides new insights into internal tide dynamics and energy budgets in submarine canyons.