Browse

You are looking at 1 - 6 of 6 items for :

  • Bulletin of the American Meteorological Society x
  • Waves to Weather (W2W) x
  • Refine by Access: All Content x
Clear All
Andreas Schäfler
and
Marc Rautenhaus

Abstract

In summer 2021, microphysical properties and climate impact of high- and midlatitude ice clouds over Europe and the North Atlantic were studied during the Cirrus High Latitude (CIRRUS-HL) airborne field campaign. The related forecasting and flight planning tasks provided a testbed for interactive 3D visual analysis. Operational analyses and forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) were visualized with the open-source software “Met.3D.” A combination of traditional 2D displays with innovative 3D views in the interactive visualization framework facilitated rapid and comprehensive exploration of the NWP data. By this means, the benefit of interactive 3D visual forecast products in the routine flight planning procedure was evaluated. Here, we describe the use of 3D tropopause and cloud visualizations during a convective event over the Alps, which became one of the CIRRUS-HL observation targets. For the planning of the research flight on 8 July 2021, our analysis revealed that simulated strong convective updrafts locally disturb the tropopause and inject ice water across the dynamical tropopause into the lower stratosphere. The presented example provides a novel 3D perspective of convective overshooting in a global NWP model and its impact on the tropopause and lower stratosphere. The case study shall encourage the atmospheric science community to further evaluate the use of modern 3D visualization capabilities for NWP analysis.

Open access
J. Li
,
Y. Li
,
J. Steppeler
,
A. Laurian
,
F. Fang
, and
D. Knapp
Open access
Rachel H. White
,
Kai Kornhuber
,
Olivia Martius
, and
Volkmar Wirth

Abstract

A notable number of high-impact weather extremes have occurred in recent years, often associated with persistent, strongly meandering atmospheric circulation patterns known as Rossby waves. Because of the high societal and ecosystem impacts, it is of great interest to be able to accurately project how such extreme events will change with climate change, and to predict these events on seasonal-to-subseasonal (S2S) time scales. There are multiple physical links connecting upper-atmosphere circulation patterns to surface weather extremes, and it is asking a lot of our dynamical models to accurately simulate all of these. Subsequently, our confidence in future projections and S2S forecasts of extreme events connected to Rossby waves remains relatively low. We also lack full fundamental theories for the growth and propagation of Rossby waves on the spatial and temporal scales relevant to extreme events, particularly under strongly nonlinear conditions. By focusing on one of the first links in the chain from upper-atmospheric conditions to surface extremes—the Rossby waveguide—it may be possible to circumvent some model biases in later links. To further our understanding of the nature of waveguides, links to persistent surface weather events and their representation in models, we recommend exploring these links in model hierarchies of increasing complexity, developing fundamental theory, exploiting novel large ensemble datasets, harnessing deep learning, and increased community collaboration. This would help increase understanding and confidence in both S2S predictions of extremes and of projections of the impact of climate change on extreme weather events.

Full access
George C. Craig
,
Andreas H. Fink
,
Corinna Hoose
,
Tijana Janjić
,
Peter Knippertz
,
Audine Laurian
,
Sebastian Lerch
,
Bernhard Mayer
,
Annette Miltenberger
,
Robert Redl
,
Michael Riemer
,
Kirsten I. Tempest
, and
Volkmar Wirth

Abstract

Prediction of weather is a main goal of atmospheric science. Its importance to society is growing continuously due to factors such as vulnerability to natural disasters, the move to renewable energy sources, and the risks of climate change. But prediction is also a major scientific challenge due to the inherently limited predictability of a chaotic atmosphere, and has led to a revolution in forecasting methods as we have moved to probabilistic prediction. These changes provide the motivation for Waves to Weather (W2W), a major national research program in Germany with three main university partners in Munich, Mainz, and Karlsruhe. We are currently in the second 4-yr phase of our planned duration of 12 years and employ 36 doctoral and postdoctoral scientists. In the context of this large program, we address what we have identified to be the most important and challenging scientific questions in predictability of weather, namely, upscale error growth, errors associated with cloud processes, and probabilistic prediction of high-impact weather. This paper presents some key results of the first phase of W2W and discusses how they have influenced our understanding of predictability. The key role of interdisciplinary research linking atmospheric scientists with experts in visualization, statistics, numerical analysis, and inverse methods will be highlighted. To ensure a lasting impact on research in our field in Germany and internationally, we have instituted innovative programs for training and support of early-career scientists, and to support education, equal opportunities, and outreach, which are also described here.

Open access
Joaquim G. Pinto
,
Florian Pantillon
,
Patrick Ludwig
,
Madeleine-Sophie Déroche
,
Giovanni Leoncini
,
Christoph C. Raible
,
Len C. Shaffrey
, and
David B. Stephenson
Full access
Andreas Schäfler
,
George Craig
,
Heini Wernli
,
Philippe Arbogast
,
James D. Doyle
,
Ron McTaggart-Cowan
,
John Methven
,
Gwendal Rivière
,
Felix Ament
,
Maxi Boettcher
,
Martina Bramberger
,
Quitterie Cazenave
,
Richard Cotton
,
Susanne Crewell
,
Julien Delanoë
,
Andreas Dörnbrack
,
André Ehrlich
,
Florian Ewald
,
Andreas Fix
,
Christian M. Grams
,
Suzanne L. Gray
,
Hans Grob
,
Silke Groß
,
Martin Hagen
,
Ben Harvey
,
Lutz Hirsch
,
Marek Jacob
,
Tobias Kölling
,
Heike Konow
,
Christian Lemmerz
,
Oliver Lux
,
Linus Magnusson
,
Bernhard Mayer
,
Mario Mech
,
Richard Moore
,
Jacques Pelon
,
Julian Quinting
,
Stephan Rahm
,
Markus Rapp
,
Marc Rautenhaus
,
Oliver Reitebuch
,
Carolyn A. Reynolds
,
Harald Sodemann
,
Thomas Spengler
,
Geraint Vaughan
,
Manfred Wendisch
,
Martin Wirth
,
Benjamin Witschas
,
Kevin Wolf
, and
Tobias Zinner

Abstract

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe.

Full access