Browse

You are looking at 1 - 2 of 2 items for :

  • Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
Thomas H. A. Frame
,
John Methven
,
Nigel M. Roberts
, and
Helen A. Titley

Abstract

The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in the 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS-15). The number density of cyclonic features is found to decline with increasing lead time, with analysis fields containing weak features that are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area-averaged enstrophy with increasing lead time. Both feature number density and area-averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area-averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximized increases with lead time from 650 km at 12 h to 950 km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity.

Full access
David M. Schultz
and
Joseph M. Sienkiewicz

Abstract

Sting jets, or surface wind maxima at the end of bent-back fronts in Shapiro–Keyser cyclones, are one cause of strong winds in extratropical cyclones. Although previous studies identified the release of conditional symmetric instability as a cause of sting jets, the mechanism to initiate its release remains unidentified. To identify this mechanism, a case study was selected of an intense cyclone over the North Atlantic Ocean during 7–8 December 2005 that possessed a sting jet detected from the NASA Quick Scatterometer (QuikSCAT). A couplet of Petterssen frontogenesis and frontolysis occurred along the bent-back front. The direct circulation associated with the frontogenesis led to ascent within the cyclonically turning portion of the warm conveyor belt, contributing to the comma-cloud head. When the bent-back front became frontolytic, an indirect circulation associated with the frontolysis, in conjunction with alongfront cold advection, led to descent within and on the warm side of the front, bringing higher-momentum air down toward the boundary layer. Sensible heat fluxes from the ocean surface and cold-air advection destabilized the boundary layer, resulting in near-neutral static stability facilitating downward mixing. Thus, descent associated with the frontolysis reaching a near-neutral boundary layer provides a physical mechanism for sting jets, is consistent with previous studies, and synthesizes existing knowledge. Specifically, this couplet of frontogenesis and frontolysis could explain why sting jets occur at the end of the bent-back front and emerge from the cloud head, why sting jets are mesoscale phenomena, and why they only occur within Shapiro–Keyser cyclones. A larger dataset of cases is necessary to test this hypothesis.

Full access