Browse
Abstract
Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than ~10 days or ~20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE) suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions), which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km.
Abstract
Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than ~10 days or ~20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE) suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions), which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km.
Abstract
Lee waves are thought to play a prominent role in Southern Ocean dynamics, facilitating a transfer of energy from the jets of the Antarctic Circumpolar Current to microscale, turbulent motions important in water mass transformations. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a 120 ± 20-m vertical amplitude lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is developed to calculate absolute vertical water velocity, augmenting the horizontal velocity measurements made by the floats. The wave exhibits fluctuations in all three velocity components of over 15 cm s−1 and an intrinsic frequency close to the local buoyancy frequency. The wave is observed to transport energy and horizontal momentum vertically at respective peak rates of 1.3 ± 0.2 W m−2 and 8 ± 1 N m−2. The rate of turbulent kinetic energy dissipation is estimated using both Thorpe scales and a method that isolates high-frequency vertical kinetic energy and is found to be enhanced within the wave to values of order 10−7 W kg−1. The observed vertical flux of energy is significantly larger than expected from idealized numerical simulations and also larger than observed depth-integrated dissipation rates. These results provide the first unambiguous observation of a lee wave in the Southern Ocean with simultaneous measurements of its energetics and dynamics.
Abstract
Lee waves are thought to play a prominent role in Southern Ocean dynamics, facilitating a transfer of energy from the jets of the Antarctic Circumpolar Current to microscale, turbulent motions important in water mass transformations. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a 120 ± 20-m vertical amplitude lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is developed to calculate absolute vertical water velocity, augmenting the horizontal velocity measurements made by the floats. The wave exhibits fluctuations in all three velocity components of over 15 cm s−1 and an intrinsic frequency close to the local buoyancy frequency. The wave is observed to transport energy and horizontal momentum vertically at respective peak rates of 1.3 ± 0.2 W m−2 and 8 ± 1 N m−2. The rate of turbulent kinetic energy dissipation is estimated using both Thorpe scales and a method that isolates high-frequency vertical kinetic energy and is found to be enhanced within the wave to values of order 10−7 W kg−1. The observed vertical flux of energy is significantly larger than expected from idealized numerical simulations and also larger than observed depth-integrated dissipation rates. These results provide the first unambiguous observation of a lee wave in the Southern Ocean with simultaneous measurements of its energetics and dynamics.
Abstract
The large-scale middepth circulation and eddy diffusivities in the southeast Pacific Ocean and Scotia Sea sectors between 110° and 45°W of the Antarctic Circumpolar Current (ACC) are described based on a subsurface quasi-isobaric RAFOS-float-based Lagrangian dataset. These RAFOS float data were collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The mean flow, adjusted to a common 1400-m depth, shows the presence of jets in the time-averaged sense with speeds of 6 cm s−1 in the southeast Pacific Ocean and upward of 13 cm s−1 in the Scotia Sea. These jets appear to be locked to topography in the Scotia Sea but, aside from negotiating a seamount chain, are mostly free of local topographic constraints in the southeast Pacific Ocean. The eddy kinetic energy (EKE) is higher than the mean kinetic energy everywhere in the sampled domain by about 50%. The magnitude of the EKE increases drastically (by a factor of 2 or more) as the current crosses over the Hero and Shackleton fracture zones into the Scotia Sea. The meridional isopycnal stirring shows lateral and vertical variations with local eddy diffusivities as high as 2800 ± 600 m2 s−1 at 700 m decreasing to 990 ± 200 m2 s−1 at 1800 m in the southeast Pacific Ocean. However, the cross-ACC diffusivity in the southeast Pacific Ocean is significantly lower, with values of 690 ± 150 and 1000 ± 200 m2 s−1 at shallow and deep levels, respectively, due to the action of jets. The cross-ACC diffusivity in the Scotia Sea is about 1200 ± 500 m2 s−1.
Abstract
The large-scale middepth circulation and eddy diffusivities in the southeast Pacific Ocean and Scotia Sea sectors between 110° and 45°W of the Antarctic Circumpolar Current (ACC) are described based on a subsurface quasi-isobaric RAFOS-float-based Lagrangian dataset. These RAFOS float data were collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The mean flow, adjusted to a common 1400-m depth, shows the presence of jets in the time-averaged sense with speeds of 6 cm s−1 in the southeast Pacific Ocean and upward of 13 cm s−1 in the Scotia Sea. These jets appear to be locked to topography in the Scotia Sea but, aside from negotiating a seamount chain, are mostly free of local topographic constraints in the southeast Pacific Ocean. The eddy kinetic energy (EKE) is higher than the mean kinetic energy everywhere in the sampled domain by about 50%. The magnitude of the EKE increases drastically (by a factor of 2 or more) as the current crosses over the Hero and Shackleton fracture zones into the Scotia Sea. The meridional isopycnal stirring shows lateral and vertical variations with local eddy diffusivities as high as 2800 ± 600 m2 s−1 at 700 m decreasing to 990 ± 200 m2 s−1 at 1800 m in the southeast Pacific Ocean. However, the cross-ACC diffusivity in the southeast Pacific Ocean is significantly lower, with values of 690 ± 150 and 1000 ± 200 m2 s−1 at shallow and deep levels, respectively, due to the action of jets. The cross-ACC diffusivity in the Scotia Sea is about 1200 ± 500 m2 s−1.
Abstract
Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate ε estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on ε and the buoyancy frequency.
Abstract
Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate ε estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on ε and the buoyancy frequency.
Abstract
A coupled ice–ocean eddy-permitting Southern Ocean State Estimate (SOSE) for 2008–10 is used to describe and quantify the processes forming and destroying water in the Subantarctic Mode Water (SAMW) density range (σ θ = 26.7–27.2 kg m−3). All the terms in the temperature and salinity equations have been diagnosed to obtain a three-dimensional and time-varying volume budget for individual isopycnal layers. This study finds that air–sea buoyancy fluxes, diapycnal mixing, advection, and storage are all important to the SAMW volume budget. The formation and destruction of water in the SAMW density range occurs over a large latitude range because of the seasonal migration of the outcrop window. The strongest formation is by wintertime surface ocean heat loss occurring equatorward of the Subantarctic Front. Spring and summertime formation occur in the polar gyres through the freshening of water with σ θ > 27.2 kg m−3, with an important contribution from sea ice melt. Further buoyancy gain by heating is accomplished only after these waters have already been transformed into the SAMW density range. The spatially integrated and time-averaged SAMW formation rate in the ocean surface layer is 7.9 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) by air–sea buoyancy fluxes and 8.8 Sv by diapycnal mixing, and it is balanced by advective export into the interior ocean. Maps show that these average rates are the result of highly variable processes with strong cancellation in both space and time, revealing the complexity of water mass transformation in the three-dimensional Southern Ocean overturning circulation.
Abstract
A coupled ice–ocean eddy-permitting Southern Ocean State Estimate (SOSE) for 2008–10 is used to describe and quantify the processes forming and destroying water in the Subantarctic Mode Water (SAMW) density range (σ θ = 26.7–27.2 kg m−3). All the terms in the temperature and salinity equations have been diagnosed to obtain a three-dimensional and time-varying volume budget for individual isopycnal layers. This study finds that air–sea buoyancy fluxes, diapycnal mixing, advection, and storage are all important to the SAMW volume budget. The formation and destruction of water in the SAMW density range occurs over a large latitude range because of the seasonal migration of the outcrop window. The strongest formation is by wintertime surface ocean heat loss occurring equatorward of the Subantarctic Front. Spring and summertime formation occur in the polar gyres through the freshening of water with σ θ > 27.2 kg m−3, with an important contribution from sea ice melt. Further buoyancy gain by heating is accomplished only after these waters have already been transformed into the SAMW density range. The spatially integrated and time-averaged SAMW formation rate in the ocean surface layer is 7.9 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) by air–sea buoyancy fluxes and 8.8 Sv by diapycnal mixing, and it is balanced by advective export into the interior ocean. Maps show that these average rates are the result of highly variable processes with strong cancellation in both space and time, revealing the complexity of water mass transformation in the three-dimensional Southern Ocean overturning circulation.
Abstract
The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.
Abstract
The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.
Abstract
This study demonstrates that oceanic vertical velocities can be estimated from individual mooring measurements, even for nonstationary flow. This result is obtained under three assumptions: (i) weak diffusion (Péclet number ≫ 1), (ii) weak friction (Reynolds number ≫ 1), and (iii) small inertial terms (Rossby number ≪ 1). The theoretical framework is applied to a set of four moorings located in the Southern Ocean. For this site, the diagnosed vertical velocities are highly variable in time, their standard deviation being one to two orders of magnitude greater than their mean. The time-averaged vertical velocities are demonstrated to be largely induced by geostrophic flow and can be estimated from the time-averaged density and horizontal velocities. This suggests that local time-mean vertical velocities are primarily forced by the time-mean ocean dynamics, rather than by, for example, transient eddies or internal waves. It is also shown that, in the context of these four moorings, the time-mean vertical flow is consistent with stratified Taylor column dynamics in the presence of a topographic obstacle.
Abstract
This study demonstrates that oceanic vertical velocities can be estimated from individual mooring measurements, even for nonstationary flow. This result is obtained under three assumptions: (i) weak diffusion (Péclet number ≫ 1), (ii) weak friction (Reynolds number ≫ 1), and (iii) small inertial terms (Rossby number ≪ 1). The theoretical framework is applied to a set of four moorings located in the Southern Ocean. For this site, the diagnosed vertical velocities are highly variable in time, their standard deviation being one to two orders of magnitude greater than their mean. The time-averaged vertical velocities are demonstrated to be largely induced by geostrophic flow and can be estimated from the time-averaged density and horizontal velocities. This suggests that local time-mean vertical velocities are primarily forced by the time-mean ocean dynamics, rather than by, for example, transient eddies or internal waves. It is also shown that, in the context of these four moorings, the time-mean vertical flow is consistent with stratified Taylor column dynamics in the presence of a topographic obstacle.
Abstract
A multiwavenumber theory is formulated to represent eddy diffusivities. It expands on earlier single-wavenumber theories and includes the wide range of wavenumbers encompassed in eddy motions. In the limiting case in which ocean eddies are only composed of a single wavenumber, the multiwavenumber theory is equivalent to the single-wavenumber theory and both show mixing suppression by the eddy propagation relative to the mean flow. The multiwavenumber theory was tested in a region of the Southern Ocean (70°–45°S, 110°–20°W) that covers the Drake Passage and includes the tracer/float release locations during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Cross-stream eddy diffusivities and mixing lengths were estimated in this region from the single-wavenumber theory, from the multiwavenumber theory, and from floats deployed in a global
Abstract
A multiwavenumber theory is formulated to represent eddy diffusivities. It expands on earlier single-wavenumber theories and includes the wide range of wavenumbers encompassed in eddy motions. In the limiting case in which ocean eddies are only composed of a single wavenumber, the multiwavenumber theory is equivalent to the single-wavenumber theory and both show mixing suppression by the eddy propagation relative to the mean flow. The multiwavenumber theory was tested in a region of the Southern Ocean (70°–45°S, 110°–20°W) that covers the Drake Passage and includes the tracer/float release locations during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Cross-stream eddy diffusivities and mixing lengths were estimated in this region from the single-wavenumber theory, from the multiwavenumber theory, and from floats deployed in a global
Abstract
The use of a measure to diagnose submesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities is tested. Specifically, the robustness of a “roughness” measure to discriminate between tracer fields experiencing different submesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. This measure is used to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. The authors find that simulations with an isopycnal diffusivity of ~20 m2 s−1 best match observations in the Pacific sector of the Antarctic Circumpolar Current (ACC), rising to ~20–50 m2 s−1 through Drake Passage, representing submesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximize the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release.
Abstract
The use of a measure to diagnose submesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities is tested. Specifically, the robustness of a “roughness” measure to discriminate between tracer fields experiencing different submesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. This measure is used to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. The authors find that simulations with an isopycnal diffusivity of ~20 m2 s−1 best match observations in the Pacific sector of the Antarctic Circumpolar Current (ACC), rising to ~20–50 m2 s−1 through Drake Passage, representing submesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximize the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release.
Abstract
Eddy-permitting simulations are used to show that basinlike gyres can be observed in the large-scale barotropic flow of a wind-driven channel with a meridional topographic ridge. This is confirmed using both two-layer quasigeostrophic and 25-level primitive equation models at high horizontal resolution. Comparing results from simulations with and without the topographic ridge, it is shown that the zonal baroclinic transport in the channel increases with increasing wind stress when the bottom topography is flat but not when there is a meridional ridge. The saturation of transport for increasing wind occurs in conjunction with the development of recirculating gyres in the large-scale barotropic streamfunction. This suggests that the total circulation can be thought of as a superposition of a gyre mode (which has zero circumpolar transport) and a free circumpolar mode (which contains all of the transport). Basinlike gyres arise in the channel because the topography steers the barotropic streamlines and supports a frictional boundary layer similar to the more familiar ones observed along western boundaries. The gyre mode is thus closely linked with the bottom form stress exerted by the along-ridge flow and provides the sink for the wind momentum input. In this framework, any increase in wind forcing spins a stronger gyre as opposed to feeding the circumpolar transport. This hypothesis is supported with a suite of experiments where key parameters are carried over a wide range: wind stress, wind stress curl, ridge height, channel length, and bottom friction.
Abstract
Eddy-permitting simulations are used to show that basinlike gyres can be observed in the large-scale barotropic flow of a wind-driven channel with a meridional topographic ridge. This is confirmed using both two-layer quasigeostrophic and 25-level primitive equation models at high horizontal resolution. Comparing results from simulations with and without the topographic ridge, it is shown that the zonal baroclinic transport in the channel increases with increasing wind stress when the bottom topography is flat but not when there is a meridional ridge. The saturation of transport for increasing wind occurs in conjunction with the development of recirculating gyres in the large-scale barotropic streamfunction. This suggests that the total circulation can be thought of as a superposition of a gyre mode (which has zero circumpolar transport) and a free circumpolar mode (which contains all of the transport). Basinlike gyres arise in the channel because the topography steers the barotropic streamlines and supports a frictional boundary layer similar to the more familiar ones observed along western boundaries. The gyre mode is thus closely linked with the bottom form stress exerted by the along-ridge flow and provides the sink for the wind momentum input. In this framework, any increase in wind forcing spins a stronger gyre as opposed to feeding the circumpolar transport. This hypothesis is supported with a suite of experiments where key parameters are carried over a wide range: wind stress, wind stress curl, ridge height, channel length, and bottom friction.