Browse

You are looking at 1 - 10 of 16 items for :

  • Earth’s Energy Imbalance and Energy Flows through the Climate System x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Hamish D. Prince
and
Tristan S. L’Ecuyer

Abstract

Satellite observations reveal that decreasing surface albedo in both polar regions is increasing the absorption of solar radiation, but the disposition of this absorbed energy is fundamentally different. Fluxes of absorbed solar radiation, emitted thermal radiation, and net energy imbalances are assessed for both polar regions for the last 21 years in the Clouds and Earth’s Radiant Energy System record. Arctic absorbed solar radiation is increasing at 0.98 ± 0.69 W m−2 decade−1, consistent with the anticipated response to sea ice loss. However, Arctic thermal emission is responding at a similar rate of 0.94 ± 0.55 W m−2 decade−1. This is surprising since the radiative impact of ice loss would be expected to favor increasing solar absorption. We find however, that clouds substantially mask trends in Arctic solar absorption relative to clear sky while having only a modest impact on thermal emission trends. As a result, the Arctic net radiation imbalance has not changed over the period. Furthermore, variability of absorbed solar radiation explains two-thirds of the variability in annual thermal emission suggesting that Arctic thermal fluxes rapidly adjust to offset changes in solar absorption and re-establish equilibrium. Conversely, Antarctic thermal emission is not responding to the increasing (although not yet statistically significant) solar absorption of 0.59 ± 0.64 W m−2 decade−1 with less than a third of the annual thermal variability explained by accumulated solar absorption. The Arctic is undergoing rapid adjustment to increasing solar absorption resulting in no change to the net energy deficit, while increasing Antarctic solar absorption represents additional energy input into the Earth system.

Significance Statement

The polar regions of Earth are undergoing ice loss through ongoing global warming, reducing the ice cover and decreasing solar reflectivity, which would be expected to warm these regions. We use satellite observations to measure the trends in solar absorption and emitted thermal radiation over the Arctic and Antarctic for the last two decades. Arctic thermal emission is increasing at a compensating rate to solar absorption with a close relationship between these processes. Conversely, Antarctic thermal emission is not responding to solar absorption demonstrating that Antarctic surface temperatures are not significantly influenced by the region’s reflectivity. The Arctic is undergoing rapid adjustment to increasing solar absorption through warming, while increasing Antarctic solar absorption represents additional energy input into the Earth system.

Open access
Lijing Cheng
,
Grant Foster
,
Zeke Hausfather
,
Kevin E. Trenberth
, and
John Abraham

Abstract

The increased concentrations of greenhouse gases in the atmosphere create an increase in Earth’s thermal energy, which is mainly stored in the ocean. Quantification of the rate of increase in ocean heat content (OHC) is vital for understanding the current and future climate of Earth. Linear trend lines have been frequently used to quantify long-term rates of change, but are inappropriate because they cannot capture nonlinearity in trends, have large start- and end-point sensitivity, and the assumption of linearity is nonphysical. Here observed and model-based linear regressions with higher-order polynomial (quadratic), piecewise linear, and locally weighted scatterplot smoothing (LOWESS) are compared. Piecewise linear and LOWESS perform best in depicting multidecadal trends. It is shown that linear rates are valid for up to about 15-yr segments (i.e., it is valid to compute linear rates within a 15-yr time window). Using the recommended methods, ocean warming for the upper 2000 m increases from about 0 to 0.06 ± 0.08 W m−2 for 1958–73 to 0.58 ± 0.08 W m−2 for 2003–18, indicating an acceleration of ocean warming that happens in all four ocean basins and from near the sea surface to 2000 m. There is consistency between multimodel-mean historically forced climate models and observations, which implies that the contribution of internal variability is small for global 0–2000 m OHC. Notable increases of OHC in the upper ocean (i.e., 0–300 m) after about 1980 and the deeper ocean (300–2000 m) after the late 1980s are also evident. This study suggests alternative methods to those currently used to estimate ocean warming rates to provide a more accurate quantification of long-term Earth’s energy changes.

Significance Statement

Quantifying long-term rates of change is needed to understand the time evolution of ocean warming and to assess the changing ocean and Earth’s energy budgets. Linear trend lines have been frequently used but cannot capture nonlinearity in trends, and have large start- and end-point sensitivity. Based on an analysis of the statistical features of ocean heat content time series, this study proposes two alternative methods to quantify the rates of change, including piecewise linear fit and LOWESS. Robust increases in warming for the upper 2000 m detected through observational records and climate models from 1958 to 2020, indicate a robust acceleration of ocean warming. Slow penetration of heat from the upper ocean into the deeper ocean is also evident.

Open access
Abhishek Savita
,
Catia M. Domingues
,
Tim Boyer
,
Viktor Gouretski
,
Masayoshi Ishii
,
Gregory C. Johnson
,
John M. Lyman
,
Josh K. Willis
,
Simon J. Marsland
,
William Hobbs
,
John A. Church
,
Didier P. Monselesan
,
Peter Dobrohotoff
,
Rebecca Cowley
, and
Susan E. Wijffels

Abstract

The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with ∼60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970–2008—with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups—to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30°N–30°S. In both mapping and XBT cases, spread is higher for 1990–2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.

Open access
Seiji Kato
,
Norman G. Loeb
,
John T. Fasullo
,
Kevin E. Trenberth
,
Peter H. Lauritzen
,
Fred G. Rose
,
David A. Rutan
, and
Masaki Satoh

Abstract

Effects of water mass imbalance and hydrometeor transport on the enthalpy flux and water phase on diabatic heating rate in computing the regional energy and water budget of the atmosphere over ocean are investigated. Equations of energy and water budget of the atmospheric column that explicitly consider the velocity of liquid and ice cloud particles, and rain and snow are formulated by separating water variables from dry air. Differences of energy budget equations formulated in this study from those used in earlier studies are that 1) diabatic heating rate depends on water phase, 2) diabatic heating due to net condensation of nonprecipitating hydrometeors is included, and 3) hydrometeors can be advected with a different velocity from the dry-air velocity. Convergence of water vapor associated with phase change and horizontal transport of hydrometeors is to increase diabatic heating in the atmospheric column where hydrometeors are formed and exported and to reduce energy where hydrometeors are imported and evaporated. The process can improve the regional energy and water mass balance when energy data products are integrated. Effects of enthalpy transport associated with water mass transport through the surface are cooling to the atmosphere and warming to the ocean when the enthalpy is averaged over the global ocean. There is no net effect to the atmosphere and ocean columns combined. While precipitation phase changes the regional diabatic heating rate up to 15 W m−2, the dependence of the global mean value on the temperature threshold of melting snow to form rain is less than 1 W m−2.

Open access
Jan D. Zika
,
Jonathan M. Gregory
,
Elaine L. McDonagh
,
Alice Marzocchi
, and
Louis Clément

Abstract

Over 90% of the buildup of additional heat in the Earth system over recent decades is contained in the ocean. Since 2006, new observational programs have revealed heterogeneous patterns of ocean heat content change. It is unclear how much of this heterogeneity is due to heat being added to and mixed within the ocean leading to material changes in water mass properties or is due to changes in circulation that redistribute existing water masses. Here we present a novel diagnosis of the “material” and “redistributed” contributions to regional heat content change between 2006 and 2017 that is based on a new “minimum transformation method” informed by both water mass transformation and optimal transportation theory. We show that material warming has large spatial coherence. The material change tends to be smaller than the redistributed change at any geographical location; however, it sums globally to the net warming of the ocean, whereas the redistributed component sums, by design, to zero. Material warming is robust over the time period of this analysis, whereas the redistributed signal only emerges from the variability in a few regions. In the North Atlantic Ocean, water mass changes indicate substantial material warming while redistribution cools the subpolar region as a result of a slowdown in the meridional overturning circulation. Warming in the Southern Ocean is explained by material warming and by anomalous southward heat transport of 118 ± 50 TW through redistribution. Our results suggest that near-term projections of ocean heat content change and therefore sea level change will hinge on understanding and predicting changes in ocean redistribution.

Open access

A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble

Damien Irving
,
Will Hobbs
,
John Church
, and
Jan Zika

Abstract

Coupled climate models are prone to “drift” (long-term unforced trends in state variables) due to incomplete spinup and nonclosure of the global mass and energy budgets. Here we assess model drift and the associated conservation of energy, mass, and salt in CMIP6 and CMIP5 models. For most models, drift in globally integrated ocean mass and heat content represents a small but nonnegligible fraction of recent historical trends, while drift in atmospheric water vapor is negligible. Model drift tends to be much larger in time-integrated ocean heat and freshwater flux, net top-of-the-atmosphere radiation (netTOA) and moisture flux into the atmosphere (evaporation minus precipitation), indicating a substantial leakage of mass and energy in the simulated climate system. Most models are able to achieve approximate energy budget closure after drift is removed, but ocean mass budget closure eludes a number of models even after dedrifting and none achieve closure of the atmospheric moisture budget. The magnitude of the drift in the CMIP6 ensemble represents an improvement over CMIP5 in some cases (salinity and time-integrated netTOA) but is worse (time-integrated ocean freshwater and atmospheric moisture fluxes) or little changed (ocean heat content, ocean mass, and time-integrated ocean heat flux) for others, while closure of the ocean mass and energy budgets after drift removal has improved.

Open access
Yang Liu
,
Jisk Attema
, and
Wilco Hazeleger

Abstract

Interactions between the atmosphere and ocean play a crucial role in redistributing energy, thereby maintaining the energy balance of the climate system. Here, we examine the compensation between the atmosphere and ocean’s heat transport variations. Motivated by previous studies with mostly numerical climate models, this so-called Bjerknes compensation is studied using reanalysis datasets. We find that atmospheric energy transport (AMET) and oceanic energy transport (OMET) variability generally agree well among the reanalysis datasets. With multiple reanalysis products, we show that Bjerknes compensation is present at almost all latitudes from 40° to 70°N in the Northern Hemisphere from interannual to decadal time scales. The compensation rates peak at different latitudes across different time scales, but they are always located in the subtropical and subpolar regions. Unlike some experiments with numerical climate models, which attribute the compensation to the variation of transient eddy transports in response to the changes of OMET at multidecadal time scales, we find that the response of mean flow to the OMET variability leads to the Bjerknes compensation, and thus the shift of the Ferrel cell at midlatitudes at decadal time scales in winter. This cell itself is driven by the eddy momentum flux. The oceanic response to AMET variations is primarily wind driven. In summer, there is hardly any compensation and the proposed mechanism is not applicable. Given the short historical records, we cannot determine whether the ocean drives the atmospheric variations or the reverse.

Open access
Seiji Kato
and
Fred G. Rose

Abstract

Vertical profiles of shortwave and longwave irradiances computed with satellite-derived cloud properties and temperature and humidity profiles from reanalysis are used to estimate entropy production. Entropy production by shortwave radiation is computed by the absorbed irradiance within layers in the atmosphere and by the surface divided by their temperatures. Similarly, entropy production by longwave radiation is computed by emitted irradiance to space from layers in the atmosphere and surface divided by their temperatures. Global annual mean entropy production by shortwave absorption and longwave emission to space are, respectively, 0.852 and 0.928 W m−2 K−1. With a steady-state assumption, entropy production by irreversible processes within the Earth system is estimated to be 0.076 W m−2 K−1 and by nonradiative irreversible processes to be 0.049 W m−2 K−1. Both global annual mean entropy productions by shortwave absorption and longwave emission to space increase with increasing shortwave absorption (i.e., with decreasing the planetary albedo). The increase of entropy production by shortwave absorption is, however, larger than the increase of entropy production by longwave emission to space. The result implies that global annual mean entropy production by irreversible processes decreases with increasing shortwave absorption. Input and output temperatures derived by dividing the absorbed shortwave irradiance and emitted longwave irradiance to space by respective entropy production are, respectively, 282 and 259 K, which give the Carnot efficiency of the Earth system of 8.5%.

Open access
Christopher M. Thomas
,
Bo Dong
, and
Keith Haines

Abstract

The NASA Energy and Water Cycle Study (NEWS) climatology is a self-consistent coupled annual and seasonal cycle solution for radiative, turbulent, and water fluxes over Earth’s surface using Earth observation data covering 2000–09. Here we seek to improve the NEWS solution, particularly over the ocean basins, by considering spatial covariances in the observation errors (some evidence for which is found by comparing five turbulent flux products over the oceans) and by introducing additional horizontal transports from ocean reanalyses as weak constraints. By explicitly representing large error covariances between surface heat flux components over the major ocean basins we retain the flux contrasts present in the original data and infer additional heat losses over the North Atlantic Ocean, more consistent with a strong Atlantic overturning. This change does not alter the global flux balance but if only the errors in evaporation and precipitation are correlated then those fluxes experience larger adjustments (e.g., the surface latent heat flux increases to 85 ± 2 W m−2). Replacing SeaFlux v1 with J-OFURO v3 (Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations) ocean fluxes also leads to a considerable increase in the global latent heat loss as well as a larger North Atlantic heat loss. Furthermore, including a weak constraint on the horizontal transports of heat and freshwater from high-resolution ocean reanalyses improves the net fluxes over the North Atlantic, Caribbean Sea, and Arctic Ocean, without any impact on the global flux balances. These results suggest that better characterized flux uncertainties can greatly improve the quality of the optimized flux solution.

Open access
Allison Hogikyan
,
Meghan F. Cronin
,
Dongxiao Zhang
, and
Seiji Kato

Abstract

The ocean surface albedo is responsible for the distribution of solar (shortwave) radiant energy between the atmosphere and ocean and therefore is a key parameter in Earth’s surface energy budget. In situ ocean observations typically do not measure upward reflected solar radiation, which is necessary to compute net solar radiation into the ocean. Instead, the upward component is computed from the measured downward component using an albedo estimate. At two NOAA Ocean Climate Station buoy sites in the North Pacific, the International Satellite Cloud Climatology Project (ISCCP) monthly climatological albedo has been used, while for the NOAA Global Tropical Buoy Array a constant albedo is used. This constant albedo is also used in the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk flux algorithm. This study considers the impacts of using the more recently available NASA Cloud and the Earth’s Radiant Energy System (CERES) albedo product for these ocean surface heat flux products. Differences between albedo estimates in global satellite products like these imply uncertainty in the net surface solar radiation heat flux estimates that locally exceed the target uncertainty of 1.0 W m−2 for the global mean, set by the Global Climate Observing System (GCOS) of the World Meteorological Organization (WMO). Albedo has large spatiotemporal variability on hourly, monthly, and interannual time scales. Biases in high-resolution SWnet (the difference between surface downwelling and upwelling shortwave radiation) can arise if the albedo diurnal cycle is unresolved. As a result, for periods when satellite albedo data are not available it is recommended that an hourly climatology be used when computing high-resolution net surface shortwave radiation.

Open access