Browse
Abstract
A comprehensive method is provided for smoothing noisy, irregularly sampled data with non-Gaussian noise using smoothing splines. We demonstrate how the spline order and tension parameter can be chosen a priori from physical reasoning. We also show how to allow for non-Gaussian noise and outliers that are typical in global positioning system (GPS) signals. We demonstrate the effectiveness of our methods on GPS trajectory data obtained from oceanographic floating instruments known as drifters.
Abstract
A comprehensive method is provided for smoothing noisy, irregularly sampled data with non-Gaussian noise using smoothing splines. We demonstrate how the spline order and tension parameter can be chosen a priori from physical reasoning. We also show how to allow for non-Gaussian noise and outliers that are typical in global positioning system (GPS) signals. We demonstrate the effectiveness of our methods on GPS trajectory data obtained from oceanographic floating instruments known as drifters.
Abstract
To develop methodologies to maximize the information content of Lagrangian data subject to position errors, synthetic trajectories produced by both a large-eddy simulation (LES) of an idealized submesoscale flow field and a high-resolution Hybrid Coordinate Ocean Model simulation of the North Atlantic circulation are analyzed. Scale-dependent Lagrangian measures of two-particle dispersion, mainly the finite-scale Lyapunov exponent [FSLE; λ(δ)], are used as metrics to determine the effects of position uncertainty on the observed dispersion regimes. It is found that the cumulative effect of position uncertainty on λ(δ) may extend to scales 20–60 times larger than the position uncertainty. The range of separation scales affected by a given level of position uncertainty depends upon the slope of the true FSLE distribution at the scale of the uncertainty. Low-pass filtering or temporal subsampling of the trajectories reduces the effective noise amplitudes at the smallest spatial scales at the expense of limiting the maximum computable value of λ. An adaptive time-filtering approach is proposed as a means of extracting the true FSLE signal from data with uncertain position measurements. Application of this filtering process to the drifters with the Argos positioning system released during the LatMix: Studies of Submesoscale Stirring and Mixing (2011) indicates that the measurement noise dominates the dispersion regime in λ for separation scales δ < 3 km. An expression is provided to estimate position errors that can be afforded depending on the expected maximum λ in the submesoscale regime.
Abstract
To develop methodologies to maximize the information content of Lagrangian data subject to position errors, synthetic trajectories produced by both a large-eddy simulation (LES) of an idealized submesoscale flow field and a high-resolution Hybrid Coordinate Ocean Model simulation of the North Atlantic circulation are analyzed. Scale-dependent Lagrangian measures of two-particle dispersion, mainly the finite-scale Lyapunov exponent [FSLE; λ(δ)], are used as metrics to determine the effects of position uncertainty on the observed dispersion regimes. It is found that the cumulative effect of position uncertainty on λ(δ) may extend to scales 20–60 times larger than the position uncertainty. The range of separation scales affected by a given level of position uncertainty depends upon the slope of the true FSLE distribution at the scale of the uncertainty. Low-pass filtering or temporal subsampling of the trajectories reduces the effective noise amplitudes at the smallest spatial scales at the expense of limiting the maximum computable value of λ. An adaptive time-filtering approach is proposed as a means of extracting the true FSLE signal from data with uncertain position measurements. Application of this filtering process to the drifters with the Argos positioning system released during the LatMix: Studies of Submesoscale Stirring and Mixing (2011) indicates that the measurement noise dominates the dispersion regime in λ for separation scales δ < 3 km. An expression is provided to estimate position errors that can be afforded depending on the expected maximum λ in the submesoscale regime.