Browse

You are looking at 1 - 10 of 14,331 items for :

  • Journal of the Atmospheric Sciences x
  • User-accessible content x
Clear All
Hyeyum Hailey Shin, Domingo Muñoz-Esparza, Jeremy A. Sauer, and Matthias Steiner

Abstract

This study explores the response of flow around isolated cuboid buildings to variations in the incoming turbulence arising from changes in atmospheric boundary layer (ABL) stability using a building-resolving large-eddy simulation (LES) technique with explicit representation of building effects through an immersed body force method. An extensive suite of LES for a neutral ABL with different model resolution and advection scheme configurations reveals that at least 6, 12, and 24 grid points per building side are required in order to resolve building-induced vortex shedding, mean-flow features, and turbulence statistics, respectively, with an advection scheme of a minimum of third order. Using model resolutions that meet this requirement, 21 building-resolving simulations are performed under varying atmospheric stability conditions, from weakly stable to convective ABLs, and for different building sizes (H), resulting in L ABL/H ≈ 0.1–10, where L ABL is the integral length scale of the incoming ABL turbulence. The building-induced flow features observed in the canonical neutral ABL simulation, e.g., the upstream horseshoe vortex and the downstream arch vortex, gradually weaken with increasing surface-driven convective instability due to the enhancement of background turbulent mixing. As a result, two local turbulence kinetic energy peaks on the lateral side of the building in nonconvective cases are merged into a single peak in strong convective cases. By considering the ABL turbulence scale and building size altogether, it is shown that the building impact decreases with increasing L ABL/H, as coherent turbulent structures in the ABL become more dominant over a building-induced flow response for L ABL/H > 1.

Open access
Tyler Mixa, Andreas Dörnbrack, and Markus Rapp

Abstract

Horizontally dispersing gravity waves with horizontal wavelengths of 30–40 km were observed at mesospheric altitudes over Auckland Island by the airborne advanced mesospheric temperature mapper during a Deep Propagating Gravity Wave Experiment (DEEPWAVE) research flight on 14 July 2014. A 3D nonlinear compressible model is used to determine which propagation conditions enabled gravity wave penetration into the mesosphere and how the resulting instability characteristics led to widespread momentum deposition. Results indicate that linear tunneling through the polar night jet enabled quick gravity wave propagation from the surface up to the mesopause, while subsequent instability processes reveal large rolls that formed in the negative shear above the jet maximum and led to significant momentum deposition as they descended. This study suggests that gravity wave tunneling is a viable source for this case and other deep propagation events reaching the mesosphere and lower thermosphere.

Open access
R. S. Ajayamohan, Boualem Khouider, V. Praveen, and Andrew J. Majda

Abstract

The barrier effect of the Maritime Continent (MC) in stalling or modifying the propagation characteristics of the MJO is widely accepted. The strong diurnal cycle of convection over the MC is believed to play a dominant role in this regard. This hypothesis is studied here, with the help of a coarse-resolution atmospheric general circulation model (AGCM). The dry dynamical core of the AGCM is coupled to the multicloud parameterization piggybacked with a dynamical bulk boundary layer model. A set of sensitivity experiments is carried out by systematically varying the strength of the MC diurnal flux to assess the impact of the diurnal convective variability on the MJO propagation. The effects of deterministic and stochastic diurnal forcings on MJO characteristics are compared. It is found that the precipitation and zonal wind variance, on the intraseasonal time scales, over the western Pacific region decreases with the increase in diurnal forcing, indicating the blocking of MC precipitation. An increase in precipitation variance over the MC associated with the weakening of precipitation variance over the west Pacific is evident in all experiments. The striking difference between deterministic and stochastic diurnal forcing experiments is that the strength needed for the deterministic case to achieve the same degree of blocking is almost double that of stochastic case. The stochastic diurnal flux over the MC seems to be more detrimental in blocking the MJO propagation. This hints at the notion that the models with inadequate representation of organized convection tend to suffer from the MC-barrier effect.

Open access
Nicholas J. Weber, Daehyun Kim, and Clifford F. Mass

Abstract

A convectively coupled equatorial Kelvin wave (CCKW) was observed over the equatorial Indian Ocean in early November 2011 during the DYNAMO field campaign. This study examines the structure of the CCKW event using two simulations made using the MPAS model: one with 3-km grid spacing without convective parameterization and another with a 15-km grid and parameterized convection. Both simulations qualitatively capture the observed structure of the CCKW, including its vertical tilt and progression of cloud/precipitation structures. The two simulations, however, differ substantially in the amplitude of the CCKW-associated precipitation. While the 3-km run realistically captures the observed modulation of precipitation by the CCKW, the 15-km simulation severely underestimates its magnitude. To understand the difference between the two MPAS simulations regarding wave–convection coupling within the CCKW, the relationship of precipitation with convective inhibition, saturation fraction, and surface turbulent fluxes is investigated. Results show that the 15-km simulation underestimates the magnitude of the CCKW precipitation peak in association with its unrealistically linear relationship between moisture and precipitation. Precipitation, both in observations and the 3-km run, is predominantly controlled by saturation fraction and this relationship is exponential. In contrast, the parameterized convection in the 15-km run is overly sensitive to convective inhibition and not sensitive enough to environmental moisture. The implications of these results on CCKW theories are discussed.

Open access
Antonio Navarra, Joe Tribbia, and Stefan Klus

Abstract

In the last years, ensemble methods have been widely popular in atmospheric, climate, and ocean dynamics investigations and forecasts as convenient methods to obtain statistical information on these systems. In many cases, ensembles have been used as an approximation to the probability distribution that has acquired more and more a central role, as the importance of a single trajectory, or member, was recognized as less informative. This paper shows that using results from the dynamical systems and more recent results from the machine learning and AI communities, we can arrive at a direct estimation of the probability distribution evolution and also at the formulation of predictor systems based on a nonlinear formulation. The paper introduces the theory and demonstrates its application to two examples. The first is a one-dimensional system based on the Niño-3 index; the second is a multidimensional case based on time series of monthly mean SST in the Pacific. We show that we can construct the probability distribution and set up a system to forecast its evolution and derive various quantities from it. The objective of the paper is not strict realism, but the introduction of these methods and the demonstration that they can be used also in the complex, multidimensional environment typical of atmosphere and ocean applications.

Open access
Peter J. Marinescu, Susan C. van den Heever, Max Heikenfeld, Andrew I. Barrett, Christian Barthlott, Corinna Hoose, Jiwen Fan, Ann M. Fridlind, Toshi Matsui, Annette K. Miltenberger, Philip Stier, Benoit Vie, Bethan A. White, and Yuwei Zhang

Abstract

This study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several consistent trends. In general, the changes between the High-CCN and Low-CCN simulations in updraft magnitudes throughout the depth of the troposphere are within 15% for all of the models. All models produce stronger (~+5%–15%) mean updrafts from ~4–7 km above ground level (AGL) in the High-CCN simulations, followed by a waning response up to ~8 km AGL in most of the models. Thermal buoyancy was more sensitive than condensate loading to varying CCN concentrations in most of the models and more impactful in the mean updraft responses. However, there are also differences between the models. The change in the amount of deep convective updrafts varies significantly. Furthermore, approximately half the models demonstrate neutral-to-weaker (~−5% to 0%) updrafts above ~8 km AGL, while the other models show stronger (~+10%) updrafts in the High-CCN simulations. The combination of the CCN-induced impacts on the buoyancy and vertical perturbation pressure gradient terms better explains these middle- and upper-tropospheric updraft trends than the buoyancy terms alone.

Open access
François Lott, Bruno Deremble, and Clément Soufflet

Abstract

The nonhydrostatic version of the mountain flow theory presented in Part I is detailed. In the near-neutral case, the surface pressure decreases when the flow crosses the mountain to balance an increase in surface friction along the ground. This produces a form drag that can be predicted qualitatively. When stratification increases, internal waves start to control the dynamics and the drag is due to upward-propagating mountain waves as in Part I. The reflected waves nevertheless add complexity to the transition. First, when stability increases, upward-propagating waves and reflected waves interact destructively and low-drag states occur. When stability increases further, the interaction becomes constructive and high-drag states are reached. In very stable cases, the reflected waves do not affect the drag much. Although the drag gives a reasonable estimate of the Reynolds stress, its sign and vertical profile are profoundly affected by stability. In the near-neutral case, the Reynolds stress in the flow is positive, with a maximum around the top of the inner layer, decelerating the large-scale flow in the inner layer and accelerating it above. In the more stable cases, on the contrary, the large-scale flow above the inner layer is decelerated as expected for dissipated mountain waves. The structure of the flow around the mountain is also strongly affected by stability: it is characterized by nonseparated sheltering in the near-neutral cases, by upstream blocking in the very stable case, and at intermediate stability by the presence of a strong but isolated wave crest immediately downstream of the ridge.

Open access
Hai Bui and Thomas Spengler

Abstract

The sea surface temperature (SST) distribution can modulate the development of extratropical cyclones through sensible and latent heat fluxes. However, the direct and indirect effects of these surface fluxes, and thus the SST, are still not well understood. This study tackles this problem using idealized channel simulations of moist baroclinic development under the influence of surface fluxes. The model is initialized with a zonal wind field resembling the midlatitude jet and a different SST distribution for each experiment, where the absolute SST, the SST gradient, and the meridional position of the SST front are varied. The surface latent heat flux associated with the absolute SST plays a key role in enhancing the moist baroclinic development, while the sensible heat fluxes associated with the SST gradient play a minor role that can be detrimental for the development of the cyclone. The additional moisture provided by the latent heat fluxes originates from about 1000 km ahead of the cyclone a day prior to the time of the most rapid deepening. When the SST in this region is higher than 16°C, the additional latent heat is conducive for explosive cyclone development. For SSTs above 20°C, the cyclones feature characteristics of hybrid cyclones with latent heat release close to their core, maintaining their intensity for a longer period due to continuous and extensive moisture supply from the surface. A high absolute SST with a weak SST gradient, however, can lead to a delay of the deepening stage, because of unorganized convection at early stages reducing environmental baroclinicity.

Open access
R. S. Lieberman, J. France, D. A. Ortland, and S. D. Eckermann

Abstract

Recent studies suggest linkages between anomalously warm temperatures in the winter stratosphere, and the high-latitude summer mesopause. The summer temperature anomaly is manifested in the decline of polar mesospheric clouds. The 2-day wave is a strong-amplitude and transient summer feature that interacts with the background state so as to warm the high-latitude summer mesopause. This wave has been linked to a low-latitude phenomenon called inertial instability, which is organized by breaking planetary waves in the winter stratosphere. Hence, inertial instability has been identified as a possible nexus between the disturbed winter stratosphere, and summer mesopause warming. We investigate a sustained occurrence of inertial instability during 19 July–8 August 2014. During this period, stratospheric winter temperatures warmed by about 10 K, while a steep decline in polar mesospheric clouds was reported between 26 July and 6 August. We present, for the first time, wave driving associated with observed inertial instability. The effect of inertial instability is to export eastward momentum from the winter hemisphere across the equator into the summer hemisphere. Using a primitive equation model, we demonstrate that the wave stresses destabilize the stratopause summer easterly jet. The reconfigured wind profile excites the wavenumber-4 component of the 2-day wave, leading to enhanced warming of the summer mesopause. This work supports previous numerical investigations that identified planetary wave–driven inertial instability as a source of the 2-day wave.

Open access
Irina Strelnikova, Marwa Almowafy, Gerd Baumgarten, Kathrin Baumgarten, Manfred Ern, Michael Gerding, and Franz-Josef Lübken

Abstract

We present gravity wave climatologies based on 7 years (2012–18) of lidar and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures and reanalysis data at 54° and 69°N in the altitude range 30–70 km. We use 9452 (5044) h of lidar observations at Kühlungsborn [Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR)]. Filtering according to vertical wavelength (λ z < 15 km) or period (τ < 8 h) is applied. Gravity wave potential energy densities (GWPED) per unit volume (E pV) and per unit mass (E pm) are derived. GWPED from reanalysis are smaller compared to lidar. The difference increases with altitude in winter and reaches almost two orders of magnitude around 70 km. A seasonal cycle of E pV with maximum values in winter is present at both stations in nearly all lidar and SABER measurements and in reanalysis data. For SABER and for lidar (with λ < 15 km) the winter/summer ratios are a factor of ~2–4, but are significantly smaller for lidar with τ < 8 h. The winter/summer ratios are nearly identical at both stations and are significantly larger for E pm compared to E pV. Lidar and SABER observations show that E pV is larger by a factor of ~2 at Kühlungsborn compared to ALOMAR, independent of season and altitude. Comparison with mean background winds shows that simple scenarios regarding GW filtering, etc., cannot explain the Kühlungsborn–ALOMAR differences. The value of E pV decreases with altitude in nearly all cases. Corresponding E pV-scale heights from lidar are generally larger in winter compared to summer. Above ~55 km, E pV in summer is almost constant with altitude at both stations. The winter–summer difference of E pV scale heights is much smaller or absent in SABER and in reanalysis data.

Open access