Browse

You are looking at 1 - 10 of 70,640 items for :

  • Refine by Access: Content accessible to me x
Clear All
Anna Lo Piccolo
,
Christopher Horvat
, and
Baylor Fox-Kemper

Abstract

During polar winter, refreezing of exposed ocean areas results in the rejection of brine, i.e., salt-enriched plumes of water, a source of available potential energy that can drive ocean instabilities. As this process is highly localized, and driven by sea ice physics, not gradients in oceanic or atmospheric buoyancy, it is not currently captured in modern climate models. This study aims to understand the energetics and lateral transfer of density at a semi-infinite, instantaneously opened, and continuously refreezing sea ice edge through a series of high-resolution model experiments. We show that kilometer-scale submesoscale eddies grow from baroclinic instabilities via an inverse energy cascade. These eddies meander along the ice edge and propagate laterally. The lateral transfer of buoyancy by eddies is not explained by existing theories. We isolate the fundamental forcing-independent quantities driving lateral mixing and discuss the implications for the overall strength of submesoscale activity in the Arctic Ocean.

Open access
Abby Hutson
,
Ayumi Fujisaki-Manome
, and
Brent Lofgren

Abstract

The Weather Research and Forecasting (WRF) Model is used to dynamically downscale ERA-Interim global reanalysis data to test its performance as a regional climate model (RCM) for the Great Lakes region (GLR). Four cumulus parameterizations and three spectral nudging techniques applied to moisture are evaluated based on 2-m temperature and precipitation accumulation in the Great Lakes drainage basin (GLDB). Results are compared to a control simulation without spectral nudging, and additional analysis is presented showing the contribution of each nudged variable to temperature, moisture, and precipitation. All but one of the RCM test simulations have a dry precipitation bias in the warm months, and the only simulation with a wet bias also has the least precipitation error. It is found that the inclusion of spectral nudging of temperature dramatically improves a cold-season cold bias, and while the nudging of moisture improves simulated annual and diurnal temperature ranges, its impact on precipitation is complicated.

Significance Statement

Global climate models are vital to understanding our changing climate. While many include a coarse representation of the Great Lakes, they lack the resolution to represent effects like lake effect precipitation, lake breeze, and surface air temperature modification. Therefore, using a regional climate model to downscale global data is imperative to correctly simulate the land–lake–atmosphere feedbacks that contribute to regional climate. Modeling precipitation is particularly important because it plays a direct role in the Great Lakes’ water cycle. The purpose of this study is to identify the configuration of the Weather Research and Forecasting Model that best simulates precipitation and temperature in the Great Lakes region by testing cumulus parameterizations and methods of nudging the regional model toward the global model.

Open access
Shuang Yu
,
Indrasis Chakraborty
,
Gemma J. Anderson
,
Donald D. Lucas
,
Yannic Lops
, and
Daniel Galea

Abstract

Precipitation values produced by climate models are biased due to the parameterization of physical processes and limited spatial resolution. Current bias-correction approaches usually focus on correcting lower-order statistics (mean and standard deviation), which make it difficult to capture precipitation extremes. However, accurate modeling of extremes is critical for policymaking to mitigate and adapt to the effects of climate change. We develop a deep learning framework, leveraging information from key dynamical variables impacting precipitation to also match higher-order statistics (skewness and kurtosis) for the entire precipitation distribution, including extremes. The deep learning framework consists of a two-part architecture: a U-Net convolutional network to capture the spatiotemporal distribution of precipitation and a fully connected network to capture the distribution of higher-order statistics. The joint network, termed UFNet, can simultaneously improve the spatial structure of the modeled precipitation and capture the distribution of extreme precipitation values. Using climate model simulation data and observations that are climatologically similar but not strictly paired, the UFNet identifies and corrects the climate model biases, significantly improving the estimation of daily precipitation as measured by a broad range of spatiotemporal statistics. In particular, UFNet significantly improves the underestimation of extreme precipitation values seen with current bias-correction methods. Our approach constitutes a generalized framework for correcting other climate model variables which improves the accuracy of the climate model predictions, while utilizing a simpler and more stable training process.

Open access
Reese Mishler
,
Guifu Zhang
, and
Vivek N. Mahale

Abstract

Polarimetric variables such as differential phase ΦDP and its range derivative, specific differential phase K DP, contain useful information for improving quantitative precipitation estimation (QPE) and microphysics retrieval. However, the usefulness of the current operationally utilized estimation method of K DP is limited by measurement error and artifacts resulting from the differential backscattering phase δ. The contribution of δ can significantly influence the ΦDP measurements and therefore negatively affect the K DP estimates. Neglecting the presence of δ within non-Rayleigh scattering regimes has also led to the adoption of incorrect terminology regarding signatures seen within current operational K DP estimates implying associated regions of unrealistic liquid water content. A new processing method is proposed and developed to estimate both K DP and δ using classification and linear programming (LP) to reduce bias in K DP estimates caused by the δ component. It is shown that by applying the LP technique specifically to the rain regions of Rayleigh scattering along a radial profile, accurate estimates of differential propagation phase, specific differential phase, and differential backscattering phase can be retrieved within regions of both Rayleigh and non-Rayleigh scattering. This new estimation method is applied to cases of reported hail and tornado debris, and the LP results are compared to the operationally utilized least squares fit (LSF) estimates. The results show the potential use of the differential backscattering phase signature in the detection of hail and tornado debris.

Free access
Nicolas G. Alonso-De-Linaje
,
Andrea N. Hahmann
,
Ioanna Karagali
,
Krystallia Dimitriadou
, and
Merete Badger

Abstract

The paper aims to demonstrate how to enhance the accuracy of offshore wind resource estimation, specifically by incorporating near-surface satellite-derived wind observations into mesoscale models. We utilized the Weather Research and Forecasting (WRF) Model and applied observational nudging by integrating ASCAT data over offshore areas to achieve this. We then evaluated the accuracy of the nudged WRF Model simulations by comparing them with data from ocean oil platforms, tall masts, and a wind lidar mounted on a commercial ferry crossing the southern Baltic Sea. Our findings indicate that including satellite-derived ASCAT wind speeds through nudging enhances the correlation and reduces the error of the mesoscale simulations across all validation platforms. Moreover, it consistently outperforms the control and previously published WRF-based wind atlases. Using satellite-derived winds directly in the model simulations also solves the issue of lifting near-surface winds to wind turbine heights, which has been challenging in estimating wind resources at such heights. The comparison of the 1-yr-long simulations with and without nudging reveals intriguing differences in the sign and magnitude between the Baltic and North Seas, which vary seasonally. The pattern highlights a distinct regional pattern attributed to regional dynamics, sea surface temperature, atmospheric stability, and the number of available ASCAT samples.

Significance Statement

We aim to showcase a method for improving the precision of hub-height estimation of wind resources offshore. This involves integrating wind observations obtained from near-surface satellites into the model simulations. To assess the accuracy of the simulations, we compare the simulated winds to data gathered from multiple offshore sources, including oil platforms, tall masts, and a wind lidar installed on a commercial ferry.

Free access
Milind Sharma
,
Robin L. Tanamachi
, and
Eric C. Bruning

Abstract

The dual-polarization radar characteristics of severe storms are commonly used as indicators to estimate the size and intensity of deep convective updrafts. In this study, we track rapid fluctuations in updraft intensity and size by objectively identifying polarimetric fingerprints such as Z DR and K DP columns, which serve as proxies for mixed-phase updraft strength. We quantify the volume of Z DR and K DP columns to evaluate their utility in diagnosing temporal variability in lightning flash characteristics. Specifically, we analyze three severe storms that developed in environments with low-to-moderate instability and strong 0–6-km wind shear in northern Alabama during the 2016–17 VORTEX-Southeast field campaign. In these three cases (a tornadic supercell embedded in stratiform precipitation, a nontornadic supercell, and a supercell embedded within a quasi-linear convective system), we find that the volume of the K DP columns exhibits a stronger correlation with the total flash rate. The higher covariability of the K DP column volume with the total flash rate suggests that the overall electrification and precipitation microphysics were dominated by cold cloud processes. The lower covariability with the Z DR column volume indicates the presence of nonsteady updrafts or a less prominent role of warm rain processes in graupel growth and subsequent electrification. Furthermore, we observe that the majority of cloud-to-ground (CG) lightning strikes a carried negative charge to the ground. In contrast to findings from a tornadic supercell over the Great Plains, lightning flash initiations in the Alabama storms primarily occurred outside the footprint of the Z DR and K DP column objects.

Significance Statement

This study quantifies the correlation between mixed-phase updraft intensity and total lightning flash rate in three severe storms in northern Alabama. In the absence of direct updraft velocity measurements, we use polarimetric signatures, such as Z DR and K DP columns, as proxies for updraft strength. Our analysis of polarimetric radar and lightning mapping array data reveals that the lightning flash rate is more highly correlated with the K DP column volume than with the Z DR column volume in all three storms examined. This contrasts with previous findings in storms over the central Great Plains, where the Z DR column volume showed higher covariability with flash rate. Interestingly, lightning initiation in the Alabama storms mainly occurred outside the Z DR and K DP column areas, contrary to previous findings.

Open access
Georg S. Voelker
,
Gergely Bölöni
,
Young-Ha Kim
,
Günther Zängl
, and
Ulrich Achatz

Abstract

Parameterizations for internal gravity waves in atmospheric models are traditionally subject to a number of simplifications. Most notably, they rely on both neglecting wave propagation and advection in the horizontal direction (single-column assumption) and an instantaneous balance in the vertical direction (steady-state assumption). While these simplifications are well justified to cover some essential dynamic effects and keep the computational effort small, it has been shown that both mechanisms are potentially significant. In particular, the recently introduced Multiscale Gravity Wave Model (MS-GWaM) successfully applied ray-tracing methods in a novel type of transient but columnar internal gravity wave parameterization (MS-GWaM-1D). We extend this concept to a three-dimensional version of the parameterization (MS-GWaM-3D) to simulate subgrid-scale nonorographic internal gravity waves. The resulting global wave model—implemented into the weather forecast and climate code Icosahedral Nonhydrostatic (ICON)—contains three-dimensional transient propagation with accurate flux calculations, a latitude-dependent background source, and convectively generated waves. MS-GWaM-3D helps reproduce expected temperature and wind patterns in the mesopause region in the climatological zonal mean state and thus proves a viable internal gravity wave (IGW) parameterization. Analyzing the global wave action budget, we find that horizontal wave propagation is as important as vertical wave propagation. The corresponding wave refraction includes previously missing but well-known effects such as wave refraction into the polar jet streams. On a global scale, three-dimensional wave refraction leads to a horizontal flow-dependent redistribution of waves such that the structures of the zonal mean wave drag and consequently the zonal mean winds are modified.

Open access
John D. Horel
and
James T. Powell

Abstract

While many studies have examined intense rainfall and flash flooding during the North American monsoon (NAM) in Arizona, Nevada, and New Mexico, less attention has focused on the NAM’s extension into southwestern Utah. This study relates flash flood reports and Multi-Radar Multi-Sensor (MRMS) precipitation across southwestern Utah to atmospheric moisture content and instability analyses and forecasts from the High-Resolution Rapid Refresh (HRRR) model during the 2021–23 monsoon seasons. MRMS quantitative precipitation estimates over southwestern Utah during the summer depend largely on the areal coverage from the KICX WSR-88D radar near Cedar City, Utah. Those estimates are generally consistent with the limited number of precipitation gauge reports in the region except at extended distances from the radar. A strong relationship is evident between days with widespread precipitation and afternoons with above-average precipitable water (PWAT) and convective available potential energy (CAPE) estimated from HRRR analyses across the region. Time-lagged ensembles of HRRR forecasts (initialization times from 0300 to 0600 UTC) that are 13–18 h prior to the afternoon period when convection is initiating (1800–2100 UTC) are useful for situational awareness of widespread precipitation events after adjusting for underprediction of afternoon CAPE. Improved skill is possible using random forest classification relying only on PWAT and CAPE to predict days experiencing excessive (upper quartile) precipitation. Such HRRR predictions may be useful for forecasters at the Salt Lake City National Weather Service Forecast Office to assist in issuing flash flood potential statements for visitors to national parks and other recreational areas in the region.

Significance Statement

Summer flash floods in southwestern Utah are a risk to area residents and millions of visitors annually to the region’s national parks, monuments, and recreational areas. The likelihood of flash floods within the region’s catchments depends on the intense afternoon and early evening convection initiated by lift and instability primarily due to terrain–flow interactions over elevated plateaus and mountains. Forecasts at lead times of 13–18 h of moisture and instability from the operational High-Resolution Rapid Refresh model have the potential to predict summer afternoons that are likely to have increased risks for higher rainfall amounts across southwestern Utah, although they are not expected to predict the likelihood of flash floods in any specific locale.

Open access
Danyang Wang
and
Daniel R. Chavas

Abstract

Tropical cyclones are known to expand to an equilibrium size on the f plane, but the expansion process is not understood. In this study, an analytical model for tropical cyclone outer-size expansion on the f plane is proposed. Conceptually, the storm expands because the imbalance between latent heating and radiative cooling drives a lateral inflow that imports absolute vorticity. Volume-integrated latent heating increases more slowly with size than radiative cooling, and hence, the storm expands toward an equilibrium size. The predicted expansion rate is given by the ratio of the difference in size from its equilibrium value rt ,eq to an environmentally determined time scale τ rt of 10–15 days. The model is fully predictive if given a constant rt ,eq, which can also be estimated environmentally. The model successfully captures the first-order size evolution across a range of numerical simulation experiments in which the potential intensity and f are varied. The model predictions of the dependencies of lateral inflow velocity and expansion rate on latent heating rate are also compared well with numerical simulations. This model provides a useful foundation for understanding storm size dynamics in nature.

Open access
Pieter B. Smit
,
Galen Egan
, and
Isabel A. Houghton

Abstract

Peak periods estimated from finite-resolution frequency spectra are necessarily discrete. For wind-generated surface gravity waves, conflicting considerations of robust (quasi)-stationary statistics, and high spectral resolution, combined with the inverse relation between frequency and period, this typically implies that swell periods (above 10 s) are resolved at best at O ( 1 ) s intervals. Here, we consider a method to improve peak period estimates for finite-resolution spectra. Specifically, we propose to define the peak period based on continuous spectra derived from a spline-based interpolation of the discretely sampled monotone cumulative distribution function. The method may directly be applied to existing discrete spectra—the original time-domain data (which may not be available) are not required. We compare reconstructed spectra and derived peak periods to parametric shapes and field data. Peak estimates are markedly improved, allowing for better tracking of, e.g., swells. The proposed method also marginally improves spectral levels and shape for a given discretely sampled estimate.

Open access