Browse

You are looking at 1 - 10 of 3,094 items for :

  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All
Andrew Janiszeski
,
Robert M. Rauber
,
Brian F. Jewett
, and
Troy J. Zaremba

Abstract

This paper examines ice particle re-organization by three-dimensional horizontal kinematic flows within the comma head regions of two U.S. East Coast winter storms, and the effect of reorganization on particle concentrations within snowbands in each storm. In these simplified experiments, the kinematic flows are from the initialization of the HRRR model. Ice particles falling through the comma head were started from either 9, 8, or 7 km altitude, spaced every 200 m, and were transported north or northwest, arriving within the north or northwest half of the primary snowband in each storm. The greatest particle concentration enhancement within each band was a factor of 2.32–3.84 for the 16-17 Dec 2020 storm and 1.76–2.32 for the 29-30 January 2022 storm. Trajectory analyses for particles originating at 4 km on the southeast side of the comma head beneath the dry slot showed that this region supplied particles to the south side of the band with particle enhancements of factor of 1.36–2.08 for the 16-17 Dec 2020 storm and 1.04–2.16 for the 29-30 January 2022 storm. Snowfall within the bands had two source regions: 1) on the north/northwestern side, from ice particles falling from the comma head and, 2) on the southeastern side, from particles forming at or below 4 km altitude and transported northwestward by low-level flow off the Atlantic. While the findings give information on the source of particles in the bands, they do not definitively determine the cause of precipitation banding since other factors, such as large-scale ascent and embedded convection, also contribute to snow growth.

Open access
Free access
Ayumi Fujisaki-Manome
,
Haoguo Hu
,
Jia Wang
,
Joannes J. Westerink
,
Damrongsak Wirasaet
,
Guoming Ling
,
Mindo Choi
,
Saeed Moghimi
,
Edward Myers
,
Ali Abdolali
,
Clint Dawson
, and
Carol Janzen

Abstract

In Alaska’s coastal environment, accurate information of sea ice conditions is desired by operational forecasters, emergency managers, and responders. Complicated interactions among atmosphere, waves, ocean circulation, and sea ice collectively impact the ice conditions, intensity of storm surges, and flooding, making accurate predictions challenging. A collaborative work to build the Alaska Coastal Ocean Forecast System established an integrated storm surge, wave, and sea ice model system for the coasts of Alaska, where the verified model components are linked using the Earth System Modeling Framework and the National Unified Operational Prediction Capability. We present the verification of the sea ice model component based on the Los Alamos Sea Ice Model, version 6. The regional, high-resolution (3 km) configuration of the model was forced by operational atmospheric and ocean model outputs. Extensive numerical experiments were conducted from December 2018 to August 2020 to verify the model’s capability to represent detailed nearshore and offshore sea ice behavior, including landfast ice, ice thickness, and evolution of air–ice drag coefficient. Comparisons of the hindcast simulations with the observations of ice extent presented the model’s comparable performance with the Global Ocean Forecast System 3.1 (GOFS3.1). The model’s skill in reproducing landfast ice area significantly outperformed GOFS3.1. Comparison of the modeled sea ice freeboard with the Ice, Cloud, and Land Elevation Satellite-2 product showed a mean bias of −4.6 cm. Daily 5-day forecast simulations for October 2020–August 2021 presented the model’s promising performance for future implementation in the coupled model system.

Significance Statement

Accurate sea ice information along Alaska’s coasts is desired by the communities for preparedness of hazardous events, such as storm surges and flooding. However, such information, in particular predicted conditions, remains to be a gap. This study presents the verification of the state-of-art sea ice model for Alaska’s coasts for future use in the more comprehensive coupled model system where ocean circulation, wave, and sea ice models are integrated. The model demonstrates comparable performance with the existing operational ocean–ice coupled model product in reproducing overall sea ice extent and significantly outperformed it in reproducing landfast ice cover. Comparison with the novel satellite product presented the model’s ability to capture sea ice freeboard in the stable ice season.

Open access
Temple R. Lee
,
Sandip Pal
,
Ronald D. Leeper
,
Tim Wilson
,
Howard J. Diamond
,
Tilden P. Meyers
, and
David D. Turner

Abstract

The scientific literature has many studies evaluating numerical weather prediction (NWP) models. However, many of those studies averaged across a myriad of different atmospheric conditions and surface forcings that can obfuscate the atmospheric conditions when NWP models perform well versus when they perform inadequately. To help isolate these different weather conditions, we used observations from the U.S. Climate Reference Network (USCRN) obtained between 1 January and 31 December 2021 to distinguish among different near-surface atmospheric conditions [i.e., different near-surface heating rates ( d T / d t ), incoming shortwave radiation (SW d ) regimes, and 5-cm soil moisture (SM05)] to evaluate the High-Resolution Rapid Refresh (HRRR) Model, which is a 3-km model used for operational weather forecasting in the United States. On days with small (large) d T / d t , we found afternoon T biases of about 2°C (−1°C) and afternoon SW d biases of up to 170 W m−2 (100 W m−2), but negligible impacts on SM05 biases. On days with small (large) SW d , we found daytime temperature biases of about 3°C (−2.5°C) and daytime SW d biases of up to 190 W m−2 (80 W m−2). Whereas different SM05 had little impact on T and SW d biases, dry (wet) conditions had positive (negative) SM05 biases. We argue that the proper evaluation of weather forecasting models requires careful consideration of different near-surface atmospheric conditions and is critical to better identify model deficiencies in order to support improvements to the parameterization schemes used therein. A similar, regime-specific verification approach may also be used to help evaluate other geophysical models.

Significance Statement

Improving weather forecasting models requires careful evaluations against high-quality observations. We used observations from the U.S. Climate Reference Network (USCRN) and found that the performance of the High-Resolution Rapid Refresh (HRRR) Model varies as a function of differences in near-surface heating and solar radiation. This finding indicates that model evaluations need to be conducted under varying near-surface weather conditions rather than averaging across multiple weather types. This new approach will allow for model developers to better identify model deficiencies and is a useful step to helping improve weather forecasts.

Open access
Gregory J. Stumpf
and
Sarah M. Stough

Abstract

Legacy National Weather Service verification techniques, when applied to current static severe convective warnings, exhibit limitations, particularly in accounting for the precise spatial and temporal aspects of warnings and severe convective events. Consequently, they are not particularly well suited for application to some proposed future National Weather Service warning delivery methods considered under the Forecasting a Continuum of Environmental Threats (FACETs) initiative. These methods include threats-in-motion (TIM), wherein warning polygons move nearly continuously with convective hazards, and probabilistic hazard information (PHI), a concept that involves augmenting warnings with rapidly updating probabilistic plumes. A new geospatial verification method was developed and evaluated, by which warnings and observations are placed on equivalent grids within a common reference frame, with each grid cell being represented as a hit, miss, false alarm, or correct null for each minute. New measures are computed, including false alarm area and location-specific lead time, departure time, and false alarm time. Using the 27 April 2011 tornado event, we applied the TIM and PHI warning techniques to demonstrate the benefits of rapidly updating warning areas, showcase the application of the geospatial verification method within this novel warning framework, and highlight the impact of varying probabilistic warning thresholds on warning performance. Additionally, the geospatial verification method was tested on a storm-based warning dataset (2008–22) to derive annual, monthly, and hourly statistics.

Open access
John D. Horel
and
James T. Powell

Abstract

While many studies have examined intense rainfall and flash flooding during the North American Monsoon (NAM) in Arizona, Nevada, and New Mexico, less attention has focused on the NAMS’s extension into southwestern Utah. This study relates flash flood reports and Multi-Radar Multi-Sensor (MRMS) precipitation across southwestern Utah to atmospheric moisture content and instability analyses and forecasts from the High-Resolution Rapid Refresh (HRRR) model during the 2021–23 monsoon seasons.

MRMS quantitative precipitation estimates over southwestern Utah during summer depend largely on the areal coverage from the KICX WSR-88D radar near Cedar City, UT. Those estimates are generally consistent with the limited number of precipitation gauge reports in the region except at extended distances from the radar. A strong relationship is evident between days with widespread precipitation and afternoons with above average precipitable water (PWAT) and convective available potential energy (CAPE) estimated from HRRR analyses across the region.

Time-lagged ensembles of HRRR forecasts (initialization times from 03–06 UTC) that are 13–18 h prior to the afternoon period when convection is initiating (18–21 UTC) are useful for situational awareness of widespread precipitation events after adjusting for underprediction of afternoon CAPE. Improved skill is possible using random forest classification relying only on PWAT and CAPE to predict days experiencing excessive (upper quartile) precipitation. Such HRRR predictions may be useful for forecasters at the Salt Lake City National Weather Service Forecast Office to assist issuing flash flood potential statements for visitors to national parks and other recreational areas in the region.

Open access
Free access
Free access
Xi Liu
,
Yu Zheng
,
Xiaoran Zhuang
,
Yaqiang Wang
,
Xin Li
,
Zhang Bei
, and
Wenhua Zhang

Abstract

The accurate prediction of short-term rainfall, and in particular the forecast of hourly heavy rainfall (HHR) probability, remains challenging for numerical weather prediction (NWP) models. Here, we introduce a deep learning (DL) model, PredRNNv2-AWS, a convolutional recurrent neural network designed for deterministic short-term rainfall forecasting. This model integrates surface rainfall observations and atmospheric variables simulated by the Precision Weather Analysis and Forecasting System (PWAFS). Our DL model produces realistic hourly rainfall forecasts for the next 13 h. Quantitative evaluations show that the use of surface rainfall observations as one of the predictors achieves higher performance (threat score) with 263% and 186% relative improvements over NWP simulations for the first 3 h and the entire forecast hours, respectively, at a threshold of 5 mm h−1. Noting that the optical-flow method also performs well in the initial hours, its predictions quickly worsen in the final hours compared to other experiments. The machine learning model, LightGBM, is then integrated to classify HHR from the predicted hourly rainfall of PredRNNv2-AWS. The results show that PredRNNv2-AWS can better reflect actual HHR conditions compared with PredRNNv2 and PWAFS. A representative case demonstrates the superiority of PredRNNv2-AWS in predicting the evolution of the rainy system, which substantially improves the accuracy of the HHR prediction. A test case involving the extreme flood event in Zhengzhou exemplifies the generalizability of our proposed model. Our model offers a reliable framework to predict target variables that can be obtained from numerical simulations and observations, e.g., visibility, wind power, solar energy, and air pollution.

Open access
Shu-Chih Yang
,
Yi-Pin Chang
,
Hsiang-Wen Cheng
,
Kuan-Jen Lin
,
Ya-Ting Tsai
,
Jing-Shan Hong
, and
Yu-Chi Li

Abstract

In this study, we investigate the impact of assimilating densely distributed Global Navigation Satellite System (GNSS) zenith total delay (ZTD) and surface station (SFC) data on the prediction of very short-term heavy rainfall associated with afternoon thunderstorm (AT) events in the Taipei basin. Under weak synoptic-scale conditions, four cases characterized by different rainfall features are chosen for investigation. Experiments are conducted with a 3-h assimilation period, followed by 3-h forecasts. Also, various experiments are performed to explore the sensitivity of AT initialization. Data assimilation experiments are conducted with a convective-scale Weather Research and Forecasting–local ensemble transform Kalman filter (WRF-LETKF) system. The results show that ZTD assimilation can provide effective moisture corrections. Assimilating SFC wind and temperature data could additionally improve the near-surface convergence and cold bias, further increasing the impact of ZTD assimilation. Frequently assimilating SFC data every 10 min provides the best forecast performance especially for rainfall intensity predictions. Such a benefit could still be identified in the earlier forecast initialized 2 h before the start of the event. Detailed analysis of a case on 22 July 2019 reveals that frequent assimilation provides initial conditions that can lead to fast vertical expansion of the convection and trigger an intense AT. This study proposes a new metric using the fraction skill score to construct an informative diagram to evaluate the location and intensity of heavy rainfall forecast and display a clear characteristic of different cases. Issues of how assimilation strategies affect the impact of ground-based observations in a convective ensemble data assimilation system and AT development are also discussed.

Significance Statement

In this study, we investigate the impact of frequently assimilating densely distributed ground-based observations on predicting four afternoon thunderstorm events in the Taipei basin. While assimilating GNSS-ZTD data can improve the moisture fields for initializing convection, assimilating surface station data improves the prediction of rainfall location and intensity, particularly when surface data are assimilated at a very high frequency of 10 min.

Open access