Browse
Abstract
The Indo-Pacific Ocean appears exponentially stratified between 1- and 3-km depth with a decay scale on the order of 1 km. In his celebrated paper “Abyssal recipes,” W. Munk proposed a theoretical explanation of these observations by suggesting a pointwise buoyancy balance between the upwelling of cold water and the downward diffusion of heat. Assuming a constant upwelling velocity w and turbulent diffusivity κ, the model yields an exponential stratification whose decay scale is consistent with observations if κ ∼ 10−4 m2 s−1. Over time, much effort has been made to reconcile Munk’s ideas with evidence of vertical variability in κ, but comparably little emphasis has been placed on the even stronger evidence that w decays toward the surface. In particular, the basin-averaged w nearly vanishes at 1-km depth in the Indo-Pacific. In light of this evidence, we consider a variable-coefficient, basin-averaged analog of Munk’s budget, which we verify against a hierarchy of numerical models ranging from an idealized basin-and-channel configuration to a coarse global ocean simulation. Study of the budget reveals that the decay of basin-averaged w requires a concurrent decay in basin-averaged κ to produce an exponential-like stratification. As such, the frequently cited value of 10−4 m2 s−1 is representative only of the bottom of the middepths, whereas κ must be much smaller above. The decay of mixing in the vertical is as important to the stratification as its magnitude.
Significance Statement
Using a combination of theory and numerical simulations, it is argued that the observed magnitude and shape of the global ocean stratification and overturning circulation appear to demand that turbulent mixing increases quasi-exponentially toward the ocean bottom. Climate models must therefore prescribe such a vertical profile of turbulent mixing in order to properly represent the heat and carbon uptake accomplished by the global overturning circulation on centennial and longer time scales.
Abstract
The Indo-Pacific Ocean appears exponentially stratified between 1- and 3-km depth with a decay scale on the order of 1 km. In his celebrated paper “Abyssal recipes,” W. Munk proposed a theoretical explanation of these observations by suggesting a pointwise buoyancy balance between the upwelling of cold water and the downward diffusion of heat. Assuming a constant upwelling velocity w and turbulent diffusivity κ, the model yields an exponential stratification whose decay scale is consistent with observations if κ ∼ 10−4 m2 s−1. Over time, much effort has been made to reconcile Munk’s ideas with evidence of vertical variability in κ, but comparably little emphasis has been placed on the even stronger evidence that w decays toward the surface. In particular, the basin-averaged w nearly vanishes at 1-km depth in the Indo-Pacific. In light of this evidence, we consider a variable-coefficient, basin-averaged analog of Munk’s budget, which we verify against a hierarchy of numerical models ranging from an idealized basin-and-channel configuration to a coarse global ocean simulation. Study of the budget reveals that the decay of basin-averaged w requires a concurrent decay in basin-averaged κ to produce an exponential-like stratification. As such, the frequently cited value of 10−4 m2 s−1 is representative only of the bottom of the middepths, whereas κ must be much smaller above. The decay of mixing in the vertical is as important to the stratification as its magnitude.
Significance Statement
Using a combination of theory and numerical simulations, it is argued that the observed magnitude and shape of the global ocean stratification and overturning circulation appear to demand that turbulent mixing increases quasi-exponentially toward the ocean bottom. Climate models must therefore prescribe such a vertical profile of turbulent mixing in order to properly represent the heat and carbon uptake accomplished by the global overturning circulation on centennial and longer time scales.
Abstract
The seasonal variability of the eddy kinetic energy (EKE) along the Kuroshio Current (KC) is examined using outputs from an eddy-resolving (1/10°) ocean model. Using a theoretical framework for climatological monthly mean EKE, the mechanisms governing the seasonal cycle of upper-ocean EKE are investigated. East of Taiwan, the EKE shows two comparable peaks in spring and summer in the surface layer; only the spring one is evident in the subsurface layer. The seasonality is determined by mixed barotropic (BTI) and baroclinic (BCI) instabilities. Northeast of Taiwan, the EKE is also elevated during spring–summer but with a sole peak in summer, which is dominated by the meridional EKE advection by the KC. In the middle part of the KC in the East China Sea, the mesoscale (>150 km) EKE (EKEMS) is relatively strong during spring–summer, whereas the submesoscale (50–150 km) EKE (EKESM) is significantly enhanced during winter–spring. The seasonal cycles of EKEMS and EKESM are primarily controlled by the external forcing and BCI, respectively. In particular, the higher EKEMS level in summer is mainly due to the increased wind work. West of the Tokara Strait, the EKE exhibits a prominent peak in winter and has its minimum in summer, which is regulated by the BCI. As the submesoscale signals are partially resolved by the model, further studies with higher-resolution simulations and observations are needed for a better understanding of the EKESM seasonality and its contribution to the seasonally modulating EKEMS along the KC.
Abstract
The seasonal variability of the eddy kinetic energy (EKE) along the Kuroshio Current (KC) is examined using outputs from an eddy-resolving (1/10°) ocean model. Using a theoretical framework for climatological monthly mean EKE, the mechanisms governing the seasonal cycle of upper-ocean EKE are investigated. East of Taiwan, the EKE shows two comparable peaks in spring and summer in the surface layer; only the spring one is evident in the subsurface layer. The seasonality is determined by mixed barotropic (BTI) and baroclinic (BCI) instabilities. Northeast of Taiwan, the EKE is also elevated during spring–summer but with a sole peak in summer, which is dominated by the meridional EKE advection by the KC. In the middle part of the KC in the East China Sea, the mesoscale (>150 km) EKE (EKEMS) is relatively strong during spring–summer, whereas the submesoscale (50–150 km) EKE (EKESM) is significantly enhanced during winter–spring. The seasonal cycles of EKEMS and EKESM are primarily controlled by the external forcing and BCI, respectively. In particular, the higher EKEMS level in summer is mainly due to the increased wind work. West of the Tokara Strait, the EKE exhibits a prominent peak in winter and has its minimum in summer, which is regulated by the BCI. As the submesoscale signals are partially resolved by the model, further studies with higher-resolution simulations and observations are needed for a better understanding of the EKESM seasonality and its contribution to the seasonally modulating EKEMS along the KC.
Abstract
Mesoscale eddies, ubiquitous in the global ocean, play a key role in the climate system by stirring and mixing key tracers. Estimating, understanding, and predicting eddy diffusivity is of great significance for designing suitable eddy parameterization schemes for coarse-resolution climate models. This is because climate model results are sensitive to the choice of eddy diffusivity magnitudes. Using 24-yr satellite altimeter data and a Lagrangian approach, we estimate time-dependent global surface cross-stream eddy diffusivities. We found that eddy diffusivity has nonnegligible temporal variability, and the regionally averaged eddy diffusivity is significantly correlated with the climate indices, including the North Pacific Gyre Oscillation, Atlantic multidecadal oscillation, El Niño–Southern Oscillation, Pacific decadal oscillation, and dipole mode index. We also found that, compared to the suppressed mixing length theory, random forest (RF) is more effective in capturing the temporal variability of regionally averaged eddy diffusivity. Our results indicate the need for using time-dependent eddy mixing coefficients in climate models and demonstrate the advantage of RF in predicting mixing temporal variability.
Significance Statement
Mixing induced by ocean eddies can greatly modulate the ocean circulation and climate variability. Steady eddy mixing coefficients are often specified in coarse-resolution climate models. However, using satellite observations, we show that the eddy mixing rate has significant temporal variability at the global ocean surface. The regional temporal variability of eddy mixing is linked with large-scale climate variability (e.g., North Pacific Gyre Oscillation and Atlantic multidecadal oscillation). We found that random forest, a user-friendly machine learning algorithm, is a better tool to predict the mixing temporal variability than the conventional mixing theory. This study suggests the possibility of improving climate model performance by using time-dependent eddy mixing coefficients inferred from machine learning methods.
Abstract
Mesoscale eddies, ubiquitous in the global ocean, play a key role in the climate system by stirring and mixing key tracers. Estimating, understanding, and predicting eddy diffusivity is of great significance for designing suitable eddy parameterization schemes for coarse-resolution climate models. This is because climate model results are sensitive to the choice of eddy diffusivity magnitudes. Using 24-yr satellite altimeter data and a Lagrangian approach, we estimate time-dependent global surface cross-stream eddy diffusivities. We found that eddy diffusivity has nonnegligible temporal variability, and the regionally averaged eddy diffusivity is significantly correlated with the climate indices, including the North Pacific Gyre Oscillation, Atlantic multidecadal oscillation, El Niño–Southern Oscillation, Pacific decadal oscillation, and dipole mode index. We also found that, compared to the suppressed mixing length theory, random forest (RF) is more effective in capturing the temporal variability of regionally averaged eddy diffusivity. Our results indicate the need for using time-dependent eddy mixing coefficients in climate models and demonstrate the advantage of RF in predicting mixing temporal variability.
Significance Statement
Mixing induced by ocean eddies can greatly modulate the ocean circulation and climate variability. Steady eddy mixing coefficients are often specified in coarse-resolution climate models. However, using satellite observations, we show that the eddy mixing rate has significant temporal variability at the global ocean surface. The regional temporal variability of eddy mixing is linked with large-scale climate variability (e.g., North Pacific Gyre Oscillation and Atlantic multidecadal oscillation). We found that random forest, a user-friendly machine learning algorithm, is a better tool to predict the mixing temporal variability than the conventional mixing theory. This study suggests the possibility of improving climate model performance by using time-dependent eddy mixing coefficients inferred from machine learning methods.
Abstract
The response of a wide shelf to subinertial and barotropic offshore pressure signals from the shelf edge was investigated. By relaxing the semigeostrophic approximation, an elliptical wave structure equation was formulated and solved with the integral transform method. It was found that when the imposed offshore signal has an along-shelf length scale similar to the shelf width, it can efficiently break the potential vorticity barrier and propagate toward the coast, producing a significant coastal sea level setup. Thereafter, the pressure signal reflects from the coast or the sloping topography, producing a transient eddy and propagates to the downshelf. The intensities of the coastal setup and the eddy increase as the along-shelf scale of the subinertial signal decreases or when its time scale is close to the inertial period. For a signal with longer time scale, the eddy is insignificant. The nature of the shelf response is controlled by the shelf conductivity κ ≡ r/(fsB), in which r is the Rayleigh friction coefficient, f is the Coriolis parameter, s is the shelf slope, and B is the shelf width, respectively. For a given offshore signal, coastal setup increases with κ. For large κ, the eddy energy is concentrated at low modes, producing a large eddy, whereas a small κ produces a small eddy. The proposed theory can explain coastal sea level fluctuations under eddy impingement in the Mid-Atlantic Bight or other similar areas.
Significance Statement
Coastal sea level and shelf circulation are greatly affected by offshore pressure signals, e.g., mesoscale eddy impingements or boundary current fluctuations. It is often assumed that the along-shelf length scale of the forcing is much larger than the shelf width, i.e., the semigeostrophic approximation. Here in this study, we found this approximation significantly underestimates the shelf–ocean interaction. A general shelf wave equation was developed that relaxed the semigeostrophic approximation and was solved analytically with a novel mathematical method. The solution can characterize the shelf response to subinertial offshore forcing at arbitrary spatiotemporal scales. It was found that for a subinertial signal with scale close to or smaller than the shelf width, significant coastal sea level setup and transient eddy can be formed, which was consistent with realistic phenomena. The new theory could promote the understanding of coastal sea level variations and along-/cross-shelf transports at synoptic and intermediate scales.
Abstract
The response of a wide shelf to subinertial and barotropic offshore pressure signals from the shelf edge was investigated. By relaxing the semigeostrophic approximation, an elliptical wave structure equation was formulated and solved with the integral transform method. It was found that when the imposed offshore signal has an along-shelf length scale similar to the shelf width, it can efficiently break the potential vorticity barrier and propagate toward the coast, producing a significant coastal sea level setup. Thereafter, the pressure signal reflects from the coast or the sloping topography, producing a transient eddy and propagates to the downshelf. The intensities of the coastal setup and the eddy increase as the along-shelf scale of the subinertial signal decreases or when its time scale is close to the inertial period. For a signal with longer time scale, the eddy is insignificant. The nature of the shelf response is controlled by the shelf conductivity κ ≡ r/(fsB), in which r is the Rayleigh friction coefficient, f is the Coriolis parameter, s is the shelf slope, and B is the shelf width, respectively. For a given offshore signal, coastal setup increases with κ. For large κ, the eddy energy is concentrated at low modes, producing a large eddy, whereas a small κ produces a small eddy. The proposed theory can explain coastal sea level fluctuations under eddy impingement in the Mid-Atlantic Bight or other similar areas.
Significance Statement
Coastal sea level and shelf circulation are greatly affected by offshore pressure signals, e.g., mesoscale eddy impingements or boundary current fluctuations. It is often assumed that the along-shelf length scale of the forcing is much larger than the shelf width, i.e., the semigeostrophic approximation. Here in this study, we found this approximation significantly underestimates the shelf–ocean interaction. A general shelf wave equation was developed that relaxed the semigeostrophic approximation and was solved analytically with a novel mathematical method. The solution can characterize the shelf response to subinertial offshore forcing at arbitrary spatiotemporal scales. It was found that for a subinertial signal with scale close to or smaller than the shelf width, significant coastal sea level setup and transient eddy can be formed, which was consistent with realistic phenomena. The new theory could promote the understanding of coastal sea level variations and along-/cross-shelf transports at synoptic and intermediate scales.
Abstract
The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments.
Significance Statement
Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies.
Abstract
The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments.
Significance Statement
Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies.
Abstract
Ocean mesoscale thermal feedback (TFB) is the influence of mesoscale sea surface temperature (SST) anomalies on the overlying atmosphere and its feedback to the ocean. Over the past few decades, TFB has been shown to affect the atmosphere by inducing low-level wind and surface stress anomalies and modulating ocean–atmosphere heat fluxes ubiquitously over the global oceans. These anomalies can alter the climate variability. However, it is not clear yet to what extent heat and momentum flux anomalies modulate the mesoscale ocean activity. Here, using coupled ocean–atmosphere mesoscale simulations over a realistic subtropical channel centered on the equator in which the TFB can be turned off by spatially smoothing the SST as seen by the atmosphere, we show that TFB can damp the mesoscale activity, with a more pronounced effect near the surface. This damping appears to be sensitive to the cutoff filter used: on average, the surface mesoscale activity is attenuated by 9% when smoothing the SST using an ∼1000-km cutoff but by only 2% when using an ∼350-km cutoff. We demonstrate that the mesoscale activity damping is primarily caused by a sink of available eddy potential energy that is controlled by the induced-anomalous heat fluxes, the surface stress anomalies having a negligible role. When TFB is neglected, the absence of sink of potential energy is partly compensated by a more negative eddy wind work. We illustrate that TFB filtering in a coupled model must be done carefully because it can also impact the large-scale meridional SST gradients and subsequently the mean large-scale wind stress curl and ocean dynamics.
Abstract
Ocean mesoscale thermal feedback (TFB) is the influence of mesoscale sea surface temperature (SST) anomalies on the overlying atmosphere and its feedback to the ocean. Over the past few decades, TFB has been shown to affect the atmosphere by inducing low-level wind and surface stress anomalies and modulating ocean–atmosphere heat fluxes ubiquitously over the global oceans. These anomalies can alter the climate variability. However, it is not clear yet to what extent heat and momentum flux anomalies modulate the mesoscale ocean activity. Here, using coupled ocean–atmosphere mesoscale simulations over a realistic subtropical channel centered on the equator in which the TFB can be turned off by spatially smoothing the SST as seen by the atmosphere, we show that TFB can damp the mesoscale activity, with a more pronounced effect near the surface. This damping appears to be sensitive to the cutoff filter used: on average, the surface mesoscale activity is attenuated by 9% when smoothing the SST using an ∼1000-km cutoff but by only 2% when using an ∼350-km cutoff. We demonstrate that the mesoscale activity damping is primarily caused by a sink of available eddy potential energy that is controlled by the induced-anomalous heat fluxes, the surface stress anomalies having a negligible role. When TFB is neglected, the absence of sink of potential energy is partly compensated by a more negative eddy wind work. We illustrate that TFB filtering in a coupled model must be done carefully because it can also impact the large-scale meridional SST gradients and subsequently the mean large-scale wind stress curl and ocean dynamics.
Abstract
Curvature can create secondary circulation and flow separation in tidal channels, and both have important consequences for the along-channel momentum budget. The North River is a sinuous estuary where drag is observed to be higher than expected, and a numerical model is used to investigate the influence of curvature-induced processes on the momentum distribution and drag. The hydrodynamic drag is greatly increased in channel bends compared to that for straight channel flows. Drag coefficients are calculated using several approaches to identify the different factors contributing to the drag increase. Flow separation creates low-pressure recirculation zones on the lee side of the bends and results in form drag. Form drag is the dominant source of the increase in total drag during flood tides and is less of a factor during ebb tides. During both floods and ebbs, curvature-induced secondary circulation transports higher-momentum fluid to the lower water column through vertical and lateral advection. Consequently, the streamwise velocity profile deviates from the classic log profile and vertical shear becomes more concentrated near the bed. This redistribution by the lateral circulation causes an overall increase in bottom friction and contributes to the increased drag. Additionally, spatial variations in the depth-averaged velocity field due to the curvature-induced flow are nonlinearly correlated with the bathymetric structure, leading to increased bottom friction. In addition to affecting the tidal flow, the redistributed momentum and altered bottom shear stress have clear implications for channel morphodynamics.
Abstract
Curvature can create secondary circulation and flow separation in tidal channels, and both have important consequences for the along-channel momentum budget. The North River is a sinuous estuary where drag is observed to be higher than expected, and a numerical model is used to investigate the influence of curvature-induced processes on the momentum distribution and drag. The hydrodynamic drag is greatly increased in channel bends compared to that for straight channel flows. Drag coefficients are calculated using several approaches to identify the different factors contributing to the drag increase. Flow separation creates low-pressure recirculation zones on the lee side of the bends and results in form drag. Form drag is the dominant source of the increase in total drag during flood tides and is less of a factor during ebb tides. During both floods and ebbs, curvature-induced secondary circulation transports higher-momentum fluid to the lower water column through vertical and lateral advection. Consequently, the streamwise velocity profile deviates from the classic log profile and vertical shear becomes more concentrated near the bed. This redistribution by the lateral circulation causes an overall increase in bottom friction and contributes to the increased drag. Additionally, spatial variations in the depth-averaged velocity field due to the curvature-induced flow are nonlinearly correlated with the bathymetric structure, leading to increased bottom friction. In addition to affecting the tidal flow, the redistributed momentum and altered bottom shear stress have clear implications for channel morphodynamics.
Abstract
A gradient-wind balanced flow with an elliptic streamline parametrically excites internal inertia-gravity waves through ageostrophic anticyclonic instability (AAI). This study numerically investigates the breaking of internal waves and the following turbulence generation resulting from the AAI. In our simulation, we periodically distort the calculation domain following the streamlines of an elliptic vortex and integrate the equations of motion using a Fourier spectral method. This technique enables us to exclude the overall structure of the large-scale vortex from the computation and concentrate on resolving the small-scale waves and turbulence. From a series of experiments, we identify two different scenarios of wave breaking conditioned on the magnitude of the instability growth rate scaled by the buoyancy frequency λ/N. First, when
Significance Statement
Due to the gradients in buoyancy and pressure, density-stratified seawater supports oscillatory vertical motion called internal waves. When waves significantly skew a density isosurface, dense water lifts over lighter water resulting in gravitational instability and high energy dissipation. In this wave-breaking process, seawater is vertically mixed, transporting heat and nutrients essential to maintain Earth’s climate and ecosystems. This study investigates the generation and breaking of ocean internal waves in a novel numerical simulation setup; we temporally distort the model shape to emulate the wave excitation forced by a larger-size horizontal eddy, a ubiquitous situation at O(1–10) km scales in the upper ocean. The simulation results exhibit two unique wave-breaking scenarios with distinct scaling features in turbulence energy dissipation rates.
Abstract
A gradient-wind balanced flow with an elliptic streamline parametrically excites internal inertia-gravity waves through ageostrophic anticyclonic instability (AAI). This study numerically investigates the breaking of internal waves and the following turbulence generation resulting from the AAI. In our simulation, we periodically distort the calculation domain following the streamlines of an elliptic vortex and integrate the equations of motion using a Fourier spectral method. This technique enables us to exclude the overall structure of the large-scale vortex from the computation and concentrate on resolving the small-scale waves and turbulence. From a series of experiments, we identify two different scenarios of wave breaking conditioned on the magnitude of the instability growth rate scaled by the buoyancy frequency λ/N. First, when
Significance Statement
Due to the gradients in buoyancy and pressure, density-stratified seawater supports oscillatory vertical motion called internal waves. When waves significantly skew a density isosurface, dense water lifts over lighter water resulting in gravitational instability and high energy dissipation. In this wave-breaking process, seawater is vertically mixed, transporting heat and nutrients essential to maintain Earth’s climate and ecosystems. This study investigates the generation and breaking of ocean internal waves in a novel numerical simulation setup; we temporally distort the model shape to emulate the wave excitation forced by a larger-size horizontal eddy, a ubiquitous situation at O(1–10) km scales in the upper ocean. The simulation results exhibit two unique wave-breaking scenarios with distinct scaling features in turbulence energy dissipation rates.
Abstract
Oceanic submesoscale flows are considered to be a crucial conduit for the downscale transfer of oceanic mesoscale kinetic energy and upper-ocean material exchange, both laterally and vertically, but defining observations revealing submesoscale dynamics and/or transport properties remain sparse. Here, we report on an elaborate observation of a warm and fresh filament intruding into a cyclonic mesoscale eddy. By integrating cruise measurements, satellite observations, particle-tracking simulations, and the trajectory of a surface drifter, we show that the filament originated from an anticyclonic eddy immediately to the west of the cyclonic eddy, and the evolution of the filament was mainly due to the geostrophic flows associated with the eddy pair. Our observations reveal the mass exchange of the eddy pair and suggest that submesoscale flows can degrade the coherence of mesoscale eddies, providing important implications for the transport properties of mesoscale eddies. Vigorous submesoscale turbulence was found within the eddy core region, due to filamentous intrusion and frontogenesis. Our findings have thus offered novel insights into the dynamics and transport properties of oceanic submesoscale flows, which should be taken into account in their simulation and parameterization in ocean and climate models.
Significance Statement
Mesoscale eddies, with a spatial scale from tens to hundreds of kilometers, are ubiquitous in the global ocean. Carrying the largest proportion of oceanic kinetic energy, mesoscale eddies play a key role in ocean dynamics and have important applications for marine biology. Although mesoscale eddies have been studied extensively over the past decades, there are two major issues that remain inconclusive: (i) How do mesoscale eddies dissipate? (ii) Can eddies coherently trap waters when moving over a long distance? Recent studies, mostly through computer simulations, suggest that oceanic submesoscale processes, with a typical scale of a few kilometers, are highly relevant to the above two issues. This study presents a rare observation of a filament intruding into a cyclonic eddy. Because of this filament intrusion, submesoscale activities are enhanced near the eddy core area, in contrast to previous observations that normally suggest weaker submesoscale activities in the eddy core area than at eddy peripheries. Such dedicated process-oriented observations provide unique opportunities for better understanding the dynamics and transport properties of mesoscale eddies and submesoscale processes.
Abstract
Oceanic submesoscale flows are considered to be a crucial conduit for the downscale transfer of oceanic mesoscale kinetic energy and upper-ocean material exchange, both laterally and vertically, but defining observations revealing submesoscale dynamics and/or transport properties remain sparse. Here, we report on an elaborate observation of a warm and fresh filament intruding into a cyclonic mesoscale eddy. By integrating cruise measurements, satellite observations, particle-tracking simulations, and the trajectory of a surface drifter, we show that the filament originated from an anticyclonic eddy immediately to the west of the cyclonic eddy, and the evolution of the filament was mainly due to the geostrophic flows associated with the eddy pair. Our observations reveal the mass exchange of the eddy pair and suggest that submesoscale flows can degrade the coherence of mesoscale eddies, providing important implications for the transport properties of mesoscale eddies. Vigorous submesoscale turbulence was found within the eddy core region, due to filamentous intrusion and frontogenesis. Our findings have thus offered novel insights into the dynamics and transport properties of oceanic submesoscale flows, which should be taken into account in their simulation and parameterization in ocean and climate models.
Significance Statement
Mesoscale eddies, with a spatial scale from tens to hundreds of kilometers, are ubiquitous in the global ocean. Carrying the largest proportion of oceanic kinetic energy, mesoscale eddies play a key role in ocean dynamics and have important applications for marine biology. Although mesoscale eddies have been studied extensively over the past decades, there are two major issues that remain inconclusive: (i) How do mesoscale eddies dissipate? (ii) Can eddies coherently trap waters when moving over a long distance? Recent studies, mostly through computer simulations, suggest that oceanic submesoscale processes, with a typical scale of a few kilometers, are highly relevant to the above two issues. This study presents a rare observation of a filament intruding into a cyclonic eddy. Because of this filament intrusion, submesoscale activities are enhanced near the eddy core area, in contrast to previous observations that normally suggest weaker submesoscale activities in the eddy core area than at eddy peripheries. Such dedicated process-oriented observations provide unique opportunities for better understanding the dynamics and transport properties of mesoscale eddies and submesoscale processes.
Abstract
Oceanic mesoscale and submesoscale eddies produce a pronounced vertical buoyancy flux, playing an important role in ocean restratification. This study used a 1-km ocean simulation to investigate the seasonality of the vertical eddy buoyancy flux (VEBF) in the Kuroshio Extension as well as its underlying dynamics. The simulated VEBF in the upper 200 m over the Kuroshio Extension has a pronounced seasonal cycle. The winter VEBF peaks in the mixed layer, whereas the summer VEBF has a much smaller magnitude but a more complicated vertical structure with a narrow peak in the shallow mixed layer and a broader and stronger peak in the seasonal thermocline. The baroclinic instability (BCI), frontogenesis, and turbulent thermal wind (TTW) balance all contribute to the VEBF seasonal cycle. In winter, large surface heat loss and intense winds destroy stratification and enhance turbulent vertical mixing in the upper ocean. These phenomena intensify VEBF by promoting its components induced by the frontogenesis and TTW balance and by triggering mixed layer instability (MLI). In summer, strong stratification associated with suppressed turbulent vertical mixing weakens the contributions of the frontogenesis and TTW balance to VEBF and shifts the dominant BCI type from the MLI to the surface Charney- and Philips-like types with greatly reduced growth rate compared with that of MLI in winter. The shallow peak of the VEBF in summer is mainly attributed to the TTW balance, whereas the BCI and frontogenesis account primarily for its deep peak.
Abstract
Oceanic mesoscale and submesoscale eddies produce a pronounced vertical buoyancy flux, playing an important role in ocean restratification. This study used a 1-km ocean simulation to investigate the seasonality of the vertical eddy buoyancy flux (VEBF) in the Kuroshio Extension as well as its underlying dynamics. The simulated VEBF in the upper 200 m over the Kuroshio Extension has a pronounced seasonal cycle. The winter VEBF peaks in the mixed layer, whereas the summer VEBF has a much smaller magnitude but a more complicated vertical structure with a narrow peak in the shallow mixed layer and a broader and stronger peak in the seasonal thermocline. The baroclinic instability (BCI), frontogenesis, and turbulent thermal wind (TTW) balance all contribute to the VEBF seasonal cycle. In winter, large surface heat loss and intense winds destroy stratification and enhance turbulent vertical mixing in the upper ocean. These phenomena intensify VEBF by promoting its components induced by the frontogenesis and TTW balance and by triggering mixed layer instability (MLI). In summer, strong stratification associated with suppressed turbulent vertical mixing weakens the contributions of the frontogenesis and TTW balance to VEBF and shifts the dominant BCI type from the MLI to the surface Charney- and Philips-like types with greatly reduced growth rate compared with that of MLI in winter. The shallow peak of the VEBF in summer is mainly attributed to the TTW balance, whereas the BCI and frontogenesis account primarily for its deep peak.