Browse

You are looking at 91 - 100 of 2,596 items for :

  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All
Yun Fan
,
Vladimir Krasnopolsky
,
Huug van den Dool
,
Chung-Yu Wu
, and
Jon Gottschalck

Abstract

Forecast skill from dynamical forecast models decreases quickly with projection time due to various errors. Therefore, postprocessing methods, from simple bias correction methods to more complicated multiple linear regression–based model output statistics, are used to improve raw model forecasts. Usually, these methods show clear forecast improvement over the raw model forecasts, especially for short-range weather forecasts. However, linear approaches have limitations because the relationship between predictands and predictors may be nonlinear. This is even truer for extended range forecasts, such as week-3–4 forecasts. In this study, neural network techniques are used to seek or model the relationships between a set of predictors and predictands, and eventually to improve week-3–4 precipitation and 2-m temperature forecasts made by the NOAA/NCEP Climate Forecast System. Benefitting from advances in machine learning techniques in recent years, more flexible and capable machine learning algorithms and availability of big datasets enable us not only to explore nonlinear features or relationships within a given large dataset, but also to extract more sophisticated pattern relationships and covariabilities hidden within the multidimensional predictors and predictands. Then these more sophisticated relationships and high-level statistical information are used to correct the model week-3–4 precipitation and 2-m temperature forecasts. The results show that to some extent neural network techniques can significantly improve the week-3–4 forecast accuracy and greatly increase the efficiency over the traditional multiple linear regression methods.

Free access
Leland M. MacDonald
and
Christopher J. Nowotarski

Abstract

Tropical cyclone tornadoes (TCTORs) are a hazard to life and property during landfalling tropical cyclones (TCs). The threat is often spread over a wide area within the TC envelope and must be continually evaluated as the TC moves inland and dissipates. To anticipate the risk of TCTORs, forecasters may use high-resolution, rapidly updating model analyses and short-range forecasts such as the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), and an ingredients-based approach similar to that used for forecasting continental midlatitude tornadoes. Though RAP and HRRR errors have been identified in typical midlatitude convective environments, this study evaluates the performance of the RAP and the HRRR within the TC envelope, with particular attention given to sounding-derived parameters previously identified as useful for TCTOR forecasting. A sample of 1730 observed upper-air soundings is sourced from 13 TCs that made landfall along the U.S. coastline between 2017 and 2019. The observed soundings are paired with their corresponding model gridpoint soundings from the RAP analysis, RAP 12-h forecast, and HRRR 12-h forecast. Model errors are calculated for both the raw sounding variables of temperature, dewpoint, and wind speed, as well as for the selected sounding-derived parameters. Results show a moist bias that worsens with height across all model runs. There are also statistically significant underpredictions in stability-related parameters such as convective available potential energy (CAPE) and kinematic parameters such as vertical wind shear.

Free access
James Taylor
,
Takumi Honda
,
Arata Amemiya
,
Shigenori Otsuka
,
Yasumitsu Maejima
, and
Takemasa Miyoshi

Abstract

A sensitivity analysis for the horizontal localization scale is performed for a numerical weather prediction (NWP) system that uses a 30-s update to refresh a 500-m mesh with observations from a new-generation multiparameter phased array weather radar (MP-PAWR). Testing is performed using three case studies of convective weather events that occurred during August–September 2019, with the aim to determine the most suitable scale for short-range forecasting of precipitating convective systems and to better understand model behavior to a rapid update cycle. Results showed that while the model could provide useful skill at lead times up to 30 min, forecasts would consistently overestimate rainfall and were unable to outperform nowcasts performed with a simple advection model. Using a larger localization scale, e.g., 4 km, generated stronger convective and dynamical instability in the analyses that made conditions more favorable for spurious and intense convection to develop in forecasts. It was demonstrated that lowering the localization scale reduced the size of analysis increments during early cycling, limiting the buildup of these conditions. Improved representation of the localized convection in the initial conditions was suggested as an important step to mitigating this issue in the model.

Free access
Yunji Zhang
,
Xingchao Chen
, and
Michael M. Bell

Abstract

The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future.

Significance Statement

During the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well.

Free access
Vannia Aliaga-Nestares
,
Gustavo De La Cruz
, and
Ken Takahashi

Abstract

Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENAMHI and the output of a regional numerical atmospheric model. We developed empirical models, fitted to data from the 2000–13 period, and verified their skill for the 2014–19 period. Since El Niño produces a strong low-frequency signal, the models focus on the high-frequency weather and subseasonal variability (60-day cutoff). The empirical models outperformed the operational forecasts and the numerical model. For instance, the high-frequency annual correlation coefficient and root-mean-square error (RMSE) for the 1-day lead forecasts were 0.37°–0.53° and 0.74°–1.76°C for the empirical model, respectively, but from around −0.05° to 0.24° and 0.88°–4.21°C in the operational case. Only three predictors were considered for the models, including persistence and large-scale atmospheric indices. Contrary to our belief, the model skill was lowest for the austral winter (June–August), when the extratropical influence is largest, suggesting an enhanced role of local effects. Including local specific humidity as a predictor for minimum temperature at the inland location substantially increased the skill and reduced its seasonality. There were cases in which both the operational and empirical forecast had similar strong errors and we suggest mesoscale circulations, such as the low-level cyclonic vortex over the ocean, as the culprit. Incorporating such information could be valuable for improving the forecasts.

Significance Statement

We wanted to compare the temperature of the operational forecast of the Meteorological and Hydrological Service, an atmospheric model, and persistence with the observed temperatures on the Peruvian central coast. In addition, we generated an empirical forecast model considering both atmospheric and local predictors. We got better results with this empirical model, considering the highest Pearson correlations and the lowest RMSE values. These results will allow us to use this empirical model as the main tool to automate the forecast on the central coast of Peru. Future work should be aimed at testing the skill of this model for forecasting in other cities of Peru.

Open access
Elizabeth J. McCabe
and
Jeffrey M. Freedman

Abstract

In a midlatitude coastal region such as the New York Bight (NYB), the general thermodynamic structure and dynamics of the sea-breeze circulation is poorly understood. The NYB sea-breeze circulation is often amplified by and coterminous with other regional characteristics and phenomena such as complex coastal topology, a low-level jet (LLJ), and coastal upwelling. While typically considered a summertime phenomenon, the NYB sea-breeze circulation occurs year-round. This study creates a methodology to objectively identify sea-breeze days and their associated LLJs from 2010 to 2020. Filtering parameters include surface-based observations of sea level pressure (SLP) gradient and diurnal tendencies, afternoon wind speed and direction tendencies, air temperature gradient, and the dewpoint depression. LLJs associated with the sea-breeze circulation typically occur within 150–300 m MSL and are identified using a coastal New York State Mesonet (NYSM) profiler site. Along coastal Long Island, there are on average 32 sea-breeze days annually, featuring winds consistently backing to the south and strengthening at or around 1800 UTC (1400 EDT). The NYB LLJ is most frequent in the summer months. Sea-breeze days are classified into two categories: classic and hybrid. A classic sea breeze is driven primarily by both cross-shore pressure and temperature gradients, with light background winds; while a hybrid sea breeze occurs in combination with other larger-scale features, such as frontal systems. Both types of sea breeze are similarly distributed with a maximum frequency during July.

Free access
I-Han Chen
,
Yi-Jui Su
,
Hsiao-Wei Lai
,
Jing-Shan Hong
,
Chih-Hsin Li
,
Pao-Liang Chang
, and
Ying-Jhang Wu

Abstract

A 16-member convective-scale ensemble prediction system (CEPS) developed at the Central Weather Bureau (CWB) of Taiwan is evaluated for probability forecasts of convective precipitation. To address the issues of limited predictability of convective systems, the CEPS provides short-range forecasts using initial conditions from a rapid-updated ensemble data assimilation system. This study aims to identify the behavior of the CEPS forecasts, especially the impact of different ensemble configurations and forecast lead times. Warm-season afternoon thunderstorms (ATs) from 30 June to 4 July 2017 are selected. Since ATs usually occur between 1300 and 2000 LST, this study compares deterministic and probabilistic quantitative precipitation forecasts (QPFs) launched at 0500, 0800, and 1100 LST. This study demonstrates that initial and boundary perturbations (IBP) are crucial to ensure good spread–skill consistency over the 18-h forecasts. On top of IBP, additional model perturbations have insignificant impacts on upper-air and precipitation forecasts. The deterministic QPFs launched at 1100 LST outperform those launched at 0500 and 0800 LST, likely because the most-recent data assimilation analyses enhance the practical predictability. However, it cannot improve the probabilistic QPFs launched at 1100 LST due to inadequate ensemble spreads resulting from limited error growth time. This study points out the importance of sufficient initial condition uncertainty on short-range probabilistic forecasts to exploit the benefits of rapid-update data assimilation analyses.

Significance Statement

This study aims to understand the behavior of convective-scale short-range probabilistic forecasts in Taiwan and the surrounding area. Taiwan is influenced by diverse weather systems, including typhoons, mei-yu fronts, and local thunderstorms. During the past decade, there has been promising improvement in predicting mesoscale weather systems (e.g., typhoons and mei-yu fronts). However, it is still challenging to provide timely and accurate forecasts for rapid-evolving high-impact convection. This study provides a reference for the designation of convective-scale ensemble prediction systems; in particular, those with a goal to provide short-range probabilistic forecasts. While the findings cannot be extrapolated to all ensemble prediction systems, this study demonstrates that initial and boundary perturbations are the most important factors, while the model perturbation has an insignificant effect. This study suggests that in-depth studies are required to improve the convective-scale initial condition accuracy and uncertainty to provide reliable probabilistic forecasts within short lead times.

Free access
William S. Lamberson
,
Michael J. Bodner
,
James A. Nelson
, and
Sara A. Sienkiewicz

Abstract

This article introduces an ensemble clustering tool developed at the Weather Prediction Center (WPC) to assist forecasters in the preparation of medium-range (3–7 day) forecasts. Effectively incorporating ensemble data into an operational forecasting process, like that used at WPC, can be challenging given time constraints and data infrastructure limitations. Often forecasters do not have time to view the large number of constituent members of an ensemble forecast, so they settle for viewing the ensemble’s mean and spread. This ignores the useful information about forecast uncertainty and the range of possible forecast outcomes that an ensemble forecast can provide. Ensemble clustering could be a solution to this problem as it can reduce a large ensemble forecast down to the most prevalent forecast scenarios. Forecasters can then quickly view these ensemble clusters to better understand and communicate forecast uncertainty and the range of possible forecast outcomes. The ensemble clustering tool developed at WPC is a variation of fuzzy clustering where operationally available ensemble members with similar 500-hPa geopotential height forecasts are grouped into four clusters. A representative case from 15 February 2021 is presented to demonstrate the clustering methodology and the overall utility of this new ensemble clustering tool. Cumulative verification statistics show that one of the four forecast scenarios identified by this ensemble clustering tool routinely outperforms all the available ensemble mean and deterministic forecasts.

Significance Statement

Ensemble forecasts could be used more effectively in medium-range (3–7 day) forecasting. Currently, the onus is put on forecasters to view and synthesize all of the data contained in an ensemble forecast. This is a task they often do not have time to adequately execute. This work proposes a solution to this problem. An automated tool was developed that would split the available ensemble members into four groups of broadly similar members. These groups were presented to forecasters as four potential forecast outcomes. Forecasters felt this tool helped them to better incorporate ensemble forecasts into their forecast process. Verification shows that presenting ensemble forecasts in this manner is an improvement on currently used ensemble forecast visualization techniques.

Free access
Sam Allen
,
Jonas Bhend
,
Olivia Martius
, and
Johanna Ziegel

Abstract

To mitigate the impacts associated with adverse weather conditions, meteorological services issue weather warnings to the general public. These warnings rely heavily on forecasts issued by underlying prediction systems. When deciding which prediction system(s) to utilize when constructing warnings, it is important to compare systems in their ability to forecast the occurrence and severity of high-impact weather events. However, evaluating forecasts for particular outcomes is known to be a challenging task. This is exacerbated further by the fact that high-impact weather often manifests as a result of several confounding features, a realization that has led to considerable research on so-called compound weather events. Both univariate and multivariate methods are therefore required to evaluate forecasts for high-impact weather. In this paper, we discuss weighted verification tools, which allow particular outcomes to be emphasized during forecast evaluation. We review and compare different approaches to construct weighted scoring rules, both in a univariate and multivariate setting, and we leverage existing results on weighted scores to introduce conditional probability integral transform (PIT) histograms, allowing forecast calibration to be assessed conditionally on particular outcomes having occurred. To illustrate the practical benefit afforded by these weighted verification tools, they are employed in a case study to evaluate probabilistic forecasts for extreme heat events issued by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss).

Free access
Adrian Rojas-Campos
,
Martin Wittenbrink
,
Pascal Nieters
,
Erik J. Schaffernicht
,
Jan D. Keller
, and
Gordon Pipa

Abstract

This study analyzes the potential of deep learning using probabilistic artificial neural networks (ANNs) for postprocessing ensemble precipitation forecasts at four observation locations. We split the precipitation forecast problem into two tasks: estimating the probability of precipitation and predicting the hourly precipitation. We then compare the performance with classical statistical postprocessing (logistical regression and GLM). ANNs show a higher performance at three of the four stations for estimating the probability of precipitation and at all stations for predicting the hourly precipitation. Further, two more general ANN models are trained using the merged data from all four stations. These general ANNs exhibit an increase in performance compared to the station-specific ANNs at most stations. However, they show a significant decay in performance at one of the stations at estimating the hourly precipitation. The general models seem capable of learning meaningful interactions in the data and generalizing these to improve the performance at other sites, which also causes the loss of local information at one station. Thus, this study indicates the potential of deep learning in weather forecasting workflows.

Open access