Browse

You are looking at 91 - 100 of 12,428 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
Mark Pinsky
and
Alexander Khain

Abstract

Velocity field in a nonprecipitating Cu under BOMEX conditions, simulated by SAM with 10-m resolution and spectral bin microphysics is separated into the convective part and the turbulent part, using a wavelet filtering. In Part II of the study properties of convective motions of this Cu were investigated. Here in Part III of the study, the parameters of cloud turbulence are calculated in the cloud updraft zone at different stages of cloud development. The main points of this study are (i) application of a fine-scale LES model of a single convective cloud allowed a direct estimation of turbulence parameters using the resolved flow in the cloud and (ii) the separation of the resolved flow into the turbulence flow and the nonturbulence flow allowed us to estimate different turbulent parameters with sufficient statistical accuracy. We calculated height and time dependences of the main turbulent parameters such as turbulence kinetic energy (TKE), spectra of TKE, dissipation rate, and the turbulent coefficient. It was found that the main source of turbulence in the cloud is buoyancy whose contribution is described by the buoyancy production term (BPT). The shear production term (SPT) increases with height and reaches its maximum near cloud top, and so does BPT. In agreement with the behavior of BPT and SPT, turbulence in the lower cloud part (below the inversion level) is weak and hardly affects the processes of mixing and entrainment. The fact that BPT is larger than SPT determines many properties of cloud turbulence. For instance, the turbulence is nonisotropic, so the vertical component of TKE is substantially larger than the horizontal components. Another consequence of the fact that BPT is larger than STP manifests itself in the finding that the turbulence spectrum largely obeys the −11/5 Bolgiano–Obukhov scaling. The classical Kolmogorov −5/3 scaling dominates for the low part of a cloud largely at the dissolving stage of cloud evolution. Using the spectra obtained we evaluated an “effective” dissipation rate which increases with height from nearly zero at cloud base up to 20 cm2 s−3 near cloud top. The coefficient of turbulent diffusion was found to increase with height and ranged from 5 m2 s−1 near cloud base to 25 m2 s−1 near cloud top. The possible role of turbulence in the process of lateral entrainment and mixing is discussed.

Significance Statement

1) This study investigates the turbulent structure of Cu using a 10-m-resolution LES model with spectral bin microphysics, 2) the main source of turbulence is buoyancy, 3) turbulence in cumulus clouds (Cu) is nonisotropic, 4) turbulence reaches maximum intensity near cloud top, 5) turbulence spectrum obeys largely the −11/5 Bolgiano–Obukhov scaling, and 6) the main turbulent parameters are evaluated.

Free access
Inna Polichtchouk
,
Annelize van Niekerk
, and
Nils Wedi

Abstract

Global ECMWF IFS simulations with horizontal grid spacings of 1, 4, and 9 km are used to assess gravity wave forcing (GWF) in the extratropical stratosphere. Results with important implications for GWF parameterizations at high and intermediate resolutions are presented. A doubling in the zonal-mean resolved GWF is observed when the horizontal resolution is increased from 9 to 1 km. Small-scale gravity waves with horizontal wavelengths < 100 km dominate this increase. Over most regions, excluding the polar night jet in the Antarctic spring, the total (resolved + parameterized) GWF at 9 km (4 km) is underestimated by up to 30% (15%). This implies that the parameterization of GWF is still required at 9 and 4 km horizontal resolutions. Despite the small land area in the Southern Hemisphere (SH), the resolved orographic and nonorographic GWF contribute equally to the total GWF in the SH at 1 km resolution. This is not reflected in the partitioning of the parameterized GWF, which has a significantly larger nonorographic contribution at 9 km. As a result, a zonal-mean momentum budget analysis reveals that the total GWF contributes one-third of SH springtime polar vortex deceleration at 1 km, whereas the contribution is as much as 50% at 9 km. This suggests that a rebalancing of the parameterized nonorographic and orographic GWF is required.

Free access
Difei Deng
and
Elizabeth A. Ritchie

Abstract

Tropical Cyclone Debbie (2017) made landfall near Airlie Beach on 28 March 2017 causing 14 fatalities and an estimated $2.67 billion (U.S. dollars) economic loss and was ranked as the most dangerous cyclone to hit Australia since TC Tracy in 1974. In addition to the extreme flooding as TC Debbie moved onshore and down the east coast of Australia, it intensified rapidly just offshore from category 2 to category 4 on the Australian TC intensity scale in under 18 h prior to making landfall. A high-resolution WRF simulation is used to analyze the inner-core structure and evolution during the offshore intensification period. Two stages are identified: a slow intensification (SI) stage characterized by an asymmetric eyewall contraction and a rapid intensification (RI) stage characterized by three eyewall breakdown and redevelopment events. Each round of breakdown and reestablishment brings high potential vorticity and equivalent potential temperature air back into the eyewall, reinvigorating eyewall convection activity and driving intensification.

Open access
Mozhgan Amiramjadi
,
Riwal Plougonven
,
Ali R. Mohebalhojeh
, and
Mohammad Mirzaei

Abstract

Machine learning (ML) provides a powerful tool for investigating the relationship between the large-scale flow and unresolved processes, which need to be parameterized in climate models. The current work explores the performance of the random forest regressor (RF) as a nonparametric model in the reconstruction of nonorographic gravity waves (GWs) over midlatitude oceanic areas. The ERA5 dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) model outputs is employed in its full resolution to derive GW variations in the lower stratosphere. Coarse-grained variables in a column-based configuration of the atmosphere are used to reconstruct the GWs variability at the target level. The first important outcome is the relative success in reconstructing the GW signal (coefficient of determination R 2 ≈ 0.85 for “E3” combination). The second outcome is that the most informative explanatory variable is the local background wind speed. This questions the traditional framework of gravity wave parameterizations, for which, at these heights, one would expect more sensitivity to sources below than to local flow. Finally, to test the efficiency of a relatively simple, parametric statistical model, the efficiency of linear regression was compared to that of random forests with a restricted set of only five explanatory variables. Results were poor. Increasing the number of input variables to 15 hardly changes the performance of the linear regression (R 2 changes slightly from 0.18 to 0.21), while it leads to better results with the random forests (R 2 increases from 0.29 to 0.37).

Open access
Nicholas M. Falk
and
Susan C. van den Heever

Abstract

Cold pools can initiate new convection by increasing vertical velocity (mechanical forcing) and locally enhancing moisture content (thermodynamic forcing). This study investigates the impact of the environment on mechanical and thermodynamic forcing from cold pool collisions. An ensemble of high-resolution numerical simulations was conducted that tested the sensitivity of cold pool collisions to three parameters: 1) the initial temperature deficit of cold pools, 2) the initial distance between cold pools, and 3) the static stability and moisture content of the environment. These parameters are tested in the absence of condensation, surface fluxes, radiation, and wind shear. Colder initial cold pools increase mechanical and thermodynamic forcing owing to greater horizontal winds during collisions. For all environments tested, mechanical forcing peaked robustly at an optimal initial distance between the cold pools due to a balance between the creation and dissipation of kinetic energy, and the different phases of density current evolution. Thermodynamic forcing peaked for greater initial cold pool distances than those associated with mechanical forcing. Decreased low-level static stability and an increased vertical gradient in low-level moisture enhanced mechanical and thermodynamic forcing, respectively. It is also shown that the initial temperature deficit had the greatest impact on mechanical and thermodynamic forcing, followed by the environment, and finally the initial separation distance. Finally, cold pool collisions are classified as “mechanically strong” or “mechanically weak,” where mechanically strong collisions increased mechanical forcing beyond that driven by the initial outward spreading of the cold pools. An analogous classification of “thermodynamically strong/weak” is also presented.

Free access
Craig Pelissier
,
William Olson
,
Kwo-Sen Kuo
,
Adrian Loftus
,
Robert Schrom
, and
Ian Adams

Abstract

An outstanding challenge in modeling the radiative properties of stratiform rain systems is an accurate representation of the mixed-phase hydrometeors present in the melting layer. The use of ice spheres coated with meltwater or mixed-dielectric spheroids have been used as rough approximations, but more realistic shapes are needed to improve the accuracy of the models. Recently, realistically structured synthetic snowflakes have been computationally generated, with radiative properties that were shown to be consistent with coincident airborne radar and microwave radiometer observations. However, melting such finely structured ice hydrometeors is a challenging problem, and most of the previous efforts have employed heuristic approaches. In the current work, physical laws governing the melting process are applied to the melting of synthetic snowflakes using a meshless-Lagrangian computational approach henceforth referred to as the Snow Meshless Lagrangian Technique (SnowMeLT). SnowMeLT is capable of scaling across large computing clusters, and a collection of synthetic aggregate snowflakes from NASA’s OpenSSP database with diameters ranging from 2 to 10.5 mm are melted as a demonstration of the method. To properly capture the flow of meltwater, the simulations are carried out at relatively high resolution (15 μm), and a new analytic approximation is developed to simulate heat transfer from the environment without the need to simulate the atmosphere explicitly.

Open access
Mu-Ting Chien
and
Daehyun Kim

Abstract

This study aims to deepen our understanding of the destabilization mechanisms and the mean-state modulation of the convectively coupled Kelvin waves (CCKWs) while testing simple models for CCKWs. We examine CCKW precipitation, vertical structure, and energetics in four modern reanalyses: the fifth version of ECMWF Reanalysis (ERA5), NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), the second version of the NCEP Climate Forecast System Reanalysis (CFSR), and the Japanese 55-year Reanalysis (JRA-55). The CCKW precipitation signal strength in the wavenumber–frequency domain and the geographical distribution of CCKW precipitation variability are reasonably represented in all reanalyses, although they commonly underestimate the amplitude of CCKW precipitation. Despite considerable interreanalysis differences in the vertical structure of temperature and diabatic heating anomalies, the eddy available potential energy (EAPE) generation within the CCKWs is found to be associated with the second baroclinic mode whereas the first baroclinic mode damps CCKW EAPE in three out of four reanalyses. Geographically, strong CCKW activity occurs in the areas of high mean-state sea surface temperature (SST), where the second mode EAPE generation is higher, mainly due to a stronger stratiform heating and a tighter wave–convection coupling. Our results are supportive of the simple models for CCKWs in which CCKWs are destabilized within the second baroclinic mode component.

Free access
Andrea E. Gordon
,
Steven M. Cavallo
, and
Amanda K. Novak

Abstract

Tropopause polar vortices (TPVs) are coherent circulations that occur over polar regions and can be identified by a local minimum in potential temperature and local maximum in potential vorticity. Numerous studies have focused on TPVs in the Arctic region; however, no previous studies have focused on the Antarctic. Given the role of TPVs in the Northern Hemisphere with surface cyclones and other extreme weather, and the role that surface cyclones can play on moisture transport and sea ice breakup, it is important to understand whether similar associations exist in the Southern Hemisphere. Here, characteristics of TPVs in the Antarctic are evaluated for the first time under the hypothesis that their characteristics do not significantly differ from those of the Northern Hemisphere. To improve understanding of Antarctic TPV characteristics, this study examines TPVs of the Southern Hemisphere and compares them to their Northern Hemisphere counterparts from 1979 to 2018 using ERA-Interim data. Common characteristics of TPVs including frequency, locations, lifetimes, strength, and seasonality are evaluated. Results indicate that topography correlates to the geographic distribution of TPVs and the locations of local maxima TPV occurrence, as observed in the Northern Hemisphere. Additionally, TPVs in the Southern Hemisphere exhibit seasonal variations for amplitude, lifetime, and minimum potential temperature. Southern Hemisphere TPVs share many similar characteristics to those observed in the Northern Hemisphere, including longer summer lifetimes. The association of Southern Hemisphere TPVs and surface cyclone frequency is explored, and it appears that TPVs have a precursory role to surface cyclones, as seen in the Northern Hemisphere.

Free access
Masoud Moeini
and
Djordje Romanic

Abstract

Downbursts are negatively buoyant downdrafts that emerge from a storm and spread outward upon hitting the surface. The produced outflow, however, is not spreading through a calm environment, but rather through an atmosphere characterized by larger-scale atmospheric boundary layer (ABL) winds. This interaction between ABL winds and downbursts forms an outflow that is more complex than an outflow created by an isolated downdraft. Here, we propose an analytical solution of the interaction between the ABL winds and an isolated downburst outflow. The model is applicable when the ratio of centerline downdraft velocity to the horizontal ABL velocity at the cloud base is larger than the nondimensional group (H/D)(r/H)1.1, where H is the cloud-base height, D is the diameter of the downdraft, and r is the distance from the centerline of isolated downdraft. Also, the solution is derived for a specific direction in the outflow when the ABL winds and the isolated downburst outflow are aligned and the vertical profiles of radial velocity are self-similar. The model is based on the use of impinging-jet dynamics, their spreading rates, and a universal renormalization group that describes numerous laboratory measurements of velocity profiles of impinging jets issuing into both quiescent and crossflowing backgrounds. The model assumes a “known” base state corresponding to an isolated downburst, and then derives its interaction with ABL winds by way of perturbation analysis. The radial and vertical profiles of horizontal velocity from our analytical model are compared against field observations of actual downbursts and other analytical models and physical simulations of downburst-like outflows.

Significance Statement

Downbursts are intense downdrafts that emerge from a thunderstorm and spread outward upon hitting the surface. Near-surface wind gusts in a downburst can be similar to those observed in an EF3-rated tornado (∼75 m s−1). A downburst outflow is not spreading through a calm environment, but rather through an atmosphere characterized by larger-scale atmospheric boundary layer (ABL) winds. This interaction between ABL winds and downbursts forms an outflow that is more complex than an outflow created by an isolated downdraft. However, most of the current analytical models of downbursts do not account for this interaction. Using experimental measurements of downburst-like impinging jets and mathematical rigor, our study derives an equation that quantifies this interaction between downburst and ABL winds.

Free access
Yuqing Wang
,
Zhe-Min Tan
, and
Yuanlong Li

Abstract

Several key issues in the simple time-dependent theories of tropical cyclone (TC) intensification developed in recent years remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature (SST) under the eyewall and the definition of environmental conditions, such as the boundary layer enthalpy in TC environment and the TC outflow-layer temperature. In this study, some refinements to the most recent time-dependent theory of TC intensification have been accomplished to resolve those issues. The first is the construction of a functional relationship between the surface pressure under the eyewall and the TC intensity, which is derived using the cyclostrophic wind balance and calibrated using full-physics axisymmetric model simulations. The second is the definition of TC environment that explicitly includes the air–sea temperature difference. The third is the TC outflow-layer temperature parameterized as a linear function of SST based on global reanalysis data. With these refinements, the updated time-dependent theory becomes self-contained and can give both the intensity-dependent TC intensification rate (IR) and the maximum potential intensity (MPI) under given environmental thermodynamic conditions. It is shown that the pressure dependence of saturation enthalpy at SST can lead to an increase in the TC MPI and IR by about half of that induced by dissipative heating due to surface friction. Results also show that both MPI and IR increase with increasing SST, surface enthalpy exchange coefficient, environmental air–sea temperature difference, and decreasing environmental boundary layer relative humidity, but the maximum IR is insensitive to surface drag coefficient.

Significance Statement

A new advancement in the recent decade is the development of simple time-dependent theories of tropical cyclone (TC) intensification, which can provide quantitative understanding of TC intensity change. However, several key issues in these simple time-dependent theories remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature under the eyewall and the definition of environmental conditions. These are resolved in this study with several refinements, which make the most recent time-dependent theory of TC intensification self-contained and practical.

Free access