Browse
The Royal Canadian Navy produces a semiweekly map of major water mass boundaries in the Western North Atlantic using temperature measurements from several data sources, including satellite sea surface temperature (SST) images from the Advanced Very High Resolution Radiometer (AVHRR). Temporal–spatial detail that can be provided by AVHRR of the location of important SST boundaries such as the Gulf Stream North Wall is limited due to pervasive cloud cover. The ability of satellite-borne synthetic aperture radar (SAR) to image SST front signatures unrestrained by cloud cover makes it a potentially significant additional data source. The Spaceborne Ocean Intelligence Network project has developed an automated procedure to detect candidate SST front signatures in RADARSAT-2 SAR images of the ocean surface and classify them with greater than 80% accuracy.
The Royal Canadian Navy produces a semiweekly map of major water mass boundaries in the Western North Atlantic using temperature measurements from several data sources, including satellite sea surface temperature (SST) images from the Advanced Very High Resolution Radiometer (AVHRR). Temporal–spatial detail that can be provided by AVHRR of the location of important SST boundaries such as the Gulf Stream North Wall is limited due to pervasive cloud cover. The ability of satellite-borne synthetic aperture radar (SAR) to image SST front signatures unrestrained by cloud cover makes it a potentially significant additional data source. The Spaceborne Ocean Intelligence Network project has developed an automated procedure to detect candidate SST front signatures in RADARSAT-2 SAR images of the ocean surface and classify them with greater than 80% accuracy.
Today's winter weather headlines are based on the meteorological strength of an event with the assumption that stronger events produce larger public impacts. In reality, public impacts involve many factors, such as whether or not snow will accumulate on roads and affect traffic. Along with numerous environmental factors, decisions are further complicated by societal factors (e.g., timing of the commute).
The National Weather Service (NWS) Strategic Plan calls for increased emphasis on decision support services (DSS) to our partners, especially during high-impact events. However, determining when events will produce high-impact conditions often remains a challenge. While forecasters should be aware of the relevant societal factors, they also need objective tools capable of integrating over the wide range of environmental factors that intersect in producing high-impact weather. This is particularly true in the case of road surface conditions, where complex interactions between temperature, moisture, and the road surface play a key role in determining what hazards might develop during wintry weather.
Initial verification suggests that output from the Model of the Environment and Temperature of Roads (METRo) can provide useful information with regard to the timing and severity of hazardous road surface conditions, allowing NWS forecasters to more effectively highlight the impacts associated with impending meteorological events. This information enhances the DSS that the NWS is able to provide to government partners, local emergency management, and the public during high-impact winter weather events.
Today's winter weather headlines are based on the meteorological strength of an event with the assumption that stronger events produce larger public impacts. In reality, public impacts involve many factors, such as whether or not snow will accumulate on roads and affect traffic. Along with numerous environmental factors, decisions are further complicated by societal factors (e.g., timing of the commute).
The National Weather Service (NWS) Strategic Plan calls for increased emphasis on decision support services (DSS) to our partners, especially during high-impact events. However, determining when events will produce high-impact conditions often remains a challenge. While forecasters should be aware of the relevant societal factors, they also need objective tools capable of integrating over the wide range of environmental factors that intersect in producing high-impact weather. This is particularly true in the case of road surface conditions, where complex interactions between temperature, moisture, and the road surface play a key role in determining what hazards might develop during wintry weather.
Initial verification suggests that output from the Model of the Environment and Temperature of Roads (METRo) can provide useful information with regard to the timing and severity of hazardous road surface conditions, allowing NWS forecasters to more effectively highlight the impacts associated with impending meteorological events. This information enhances the DSS that the NWS is able to provide to government partners, local emergency management, and the public during high-impact winter weather events.
Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime mushrooms; the topographical, geographical, and meteorological conditions under which they form; and the significant challenge they pose to climbers. Photographs and descriptions from Southern Patagonia, where rime mushrooms are well known, illustrate the phenomenon.
Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime mushrooms; the topographical, geographical, and meteorological conditions under which they form; and the significant challenge they pose to climbers. Photographs and descriptions from Southern Patagonia, where rime mushrooms are well known, illustrate the phenomenon.