Browse

You are looking at 131 - 140 of 754 items for :

  • Weather, Climate, and Society x
  • Refine by Access: Content accessible to me x
Clear All
Razieh Saboohi
,
Hossein Barani
,
Morteza Khodagholi
,
Ahmad Abedi Sarvestani
,
Asghar Tahmasebi
, and
Hart Nadav Feuer

Abstract

Nomadic pastoral communities are considered some of the most vulnerable to climate change. While Indigenous knowledge can play an effective role in mitigating or responding to some impacts of climate change, the extent of their capacity to adapt their livestock and rangeland management is under question. This research aims to assess the scope and applicability of climate change–related knowledge acquired in the management of summer rangeland, with a case study in Semirom, Isfahan Province, Iran. To do so, objective weather conditions (precipitation, minimum temperatures, and maximum temperatures) were evaluated using the Mann–Kendall nonparametric test and compared with subjective evaluations by nomad community members. Specifically, the study targeted a community of 7700 members of the Qashqai, a conglomeration of nomadic tribes in Iran. Their understanding of the weather was evaluated using focus groups and self-administered questionnaires, with a descriptive approach to data analysis. The findings of the climatic investigation revealed a possible shift in the climate in the study area, particularly in winter and autumn. The findings of subjective evaluation showed similar changes in wind, precipitation, and temperature to be the main characteristics of climate change in the region, with about 90% of informants directly citing decreasing precipitation and increasing temperature and wind speeds. The community evaluation also highlighted some adaptations to climate change, such as delays in beginning the seasonal migration, increased reliance on concrete homes, reservoir construction, decreasing livestock yields, and increasing diversification of resources to feed livestock. Understanding the perceptions of nomadic pastoralists, their meteorological basis, and ongoing climate adaptations can facilitate governmental planning.

Full access
Katy Harris
,
Frida Lager
,
Marta K. Jansen
, and
Magnus Benzie

Abstract

Recent research has highlighted that adaptation tends to focus exclusively on the local and direct impacts of climate change and misses the crucial dimension of transboundary climate risk, which all countries are likely to face, irrespective of their level of development. This paper aims to improve the coverage of transboundary climate risk in case-study research for adaptation. It proposes a protocol to help researchers identify how their case studies can incorporate an analysis of transboundary climate risk, thereby supporting more holistic, effective, and just approaches to adaptation. Existing climate risk assessment frameworks and supporting guidelines have significant strengths but also various challenges when applied to the novel context of transboundary climate risk. This is illustrated with reference to the impact chain framework. Its opportunities pertain to both its flexible form and systems-first focus while its constraints include an analytic emphasis on linear cause–effect relationships (that bely the complexity and uncertainty of systemic risk) and its limited applicability to fragmented governance landscapes (in the absence of an effective consideration of risk ownership). After critically examining the suitability of the impact chain framework, a new protocol is introduced, which builds on principles for managing complex risk and frameworks for assessing risk ownership. The protocol is designed to enable case-study researchers to better identify, assess, and appraise transboundary climate risks, as well as enquire into appropriate risk owners and adaptation options across scales. The paper argues for more innovation in adaptation research to better reflect the complexity and interdependency that characterize today’s world.

Significance Statement

This work aims to demonstrate why the transboundary nature of climate risk requires a distinct analytical approach and proposes a seven-step guide that aims to facilitate the exploration of transboundary climate risk through case-study-based research for adaptation. Domestic climate risks continue to dominate the field of climate change research, translating into a significant blind spot in adaptation planning and action. Without the provision of practical guidance—to equip researchers with approaches and tools specifically designed to analyze the transboundary and systemic nature of climate risk—adaptation action will fail to offer sufficient protection against the full range of risks climate change presents. This article begins to address this void and ultimately—through greater recognition and understanding of transboundary climate risk—promote approaches to adaptation that are reflective of the interdependency of our world today and our shared and common future.

Open access
Igor Gómez
,
Enric Valor
,
Sergio Molina
,
Raquel Niclòs
, and
Vicente Caselles

Abstract

Weather forecasts affect many persons’ lives and are used by the general public on a daily basis. However, they are not perfect, and there is an uncertainty associated with the current weather forecasts; users should be aware of this uncertainty. Previous research analyzes the perceptions, uses, and interpretations of uncertainty of Spanish undergraduate students. This study continues with this research line, but we investigate the degree of confidence and communication preferences of students enrolled in three meteorology-related subjects taught at two universities in Spain. We evaluated to what extent students trust in the current weather forecasts and analyzed how students are aware of the uncertainty associated with the forecasts considering different lead times. In addition, we assessed how students value the forecast of several weather elements as well as the students’ preferences for deterministic versus nondeterministic forecasts under two weather situations, with different degree of complexity in the forecast communication. A Google Form questionnaire was developed to address these issues. The survey was conducted in 2018/19, and 101 participants anonymously filled out the survey. Participants were enrolled in three different subjects taught in the degree in marine sciences at the University of Alicante and the degrees in environmental sciences and physics at the University of Valencia. Results show that students have a well-formed opinion of weather forecasts, both for confidence and in relation to the trend found in the current weather forecasts toward less accurate forecasts for larger lead times. For students’ preferences for deterministic versus nondeterministic forecasts, a significant majority of participants prefer weather forecasts that incorporate some uncertainty; a minority prefer single-valued (deterministic) forecasts. In comparing our results with those found in previous studies in different countries and contexts, similar outcomes are observed in general, but some differences are highlighted as well.

Full access
Joshua J. Hatzis
and
Kim E. Klockow-McClain

Abstract

On 31 May 2013, an extremely large and violent tornado hit near the town of El Reno, Oklahoma, a small town in the Oklahoma City metropolitan area. The size and intensity of this tornado, coupled with the fact that it was heading toward Oklahoma City, prompted local broadcasters to warn residents to evacuate their homes and head south if they could not shelter belowground. This warning led to a large-scale evacuation of the metropolitan area and massive traffic jams on the interstates and major highways that could have caused casualties in the hundreds if the tornado had not dissipated before reaching Oklahoma City. The focus of this study was to understand the magnitude of the 31 May 2013 evacuation through the evaluation of traffic volume data and to determine how frequently such evacuations occur in Oklahoma City and other metropolitan areas. We found that of the six metropolitan areas tested, only Oklahoma City had mass anomalous traffic reversal (ATR) days (days with a mass evacuation signal) with 31 May 2013 having the largest mass ATR day by far. Despite the rarity of mass ATR days, the potential consequences of a large, violent tornado hitting gridlocked traffic is significant, and we recommend that communicators encourage more local sheltering options.

Significance Statement

On the evening of 31 May 2013, a large-scale evacuation of the Oklahoma City metropolitan area occurred as a result of a very large and dangerous tornado that had formed near the town of El Reno and was moving east toward Oklahoma City. If the tornado had not dissipated before it reached the city it could have caused hundreds of casualties as it passed over gridlocked roads. We sought to understand the frequency of such mass evacuations and found that no other event in six metropolitan areas studied during 2011–18 could compare. While such evacuations fortunately appear rare, more work should be done to understand why they happen when they do and to connect individuals with better local sheltering options.

Full access
Free access
Temi Emmanuel Ologunorisa
,
Adebayo Oluwole Eludoyin
, and
Bola Lateef

Abstract

Flood-induced fatalities are among the more poorly reported effects of flood disasters in many developing countries because of poor data inventory and management. Specific objectives of this study are to assess the spatial and temporal variations in flood fatalities in Nigeria, the most populous country in Africa. The study explored available datasets from the National (Nigerian) Meteorological and Emergency Management Agencies as well as those from the Dartmouth Flood Observatory (DFO) at the University of Colorado Boulder and complemented those with scattered reports from Nigerian newspapers to achieve the stated objectives. Using a mix of statistical and geographical information analysis approaches, the study showed that most of Nigeria is vulnerable to flood, given the nature of the dominant climate that often results in “medium” to “high” rainfall intensity (i.e., rainfall = 38.1–50.1 mm or > 50.1 mm in 24 h, respectively), inadequate settlement planning/land-use and land-cover management, and dam failure. Analysis of the frequency of the flood–fatality relationship indicates an increase in flood fatalities by 4.7% relative to flood cases between 1985 and 2017. The study complemented the results with information from newspapers and some other non-peer-reviewed documents (especially reports from relevant agencies) and revealed the need for a better flood information management system in the country, especially since the national database and DFO records were not the same. The study concluded that flood fatalities are on the increase but are poorly reported. It thus recommends improved information systems for flood and other disasters and their fatalities in the country.

Significance Statement

The purpose of this study is to reveal the state of information on flood disasters in a typical sub-Saharan African country. This is important because information about the distribution and trend of fatalities associated with flood disasters is required for sustainable mitigation planning globally. Our results provide a guide to understanding the distribution and associated factors of flood disasters as well as the contributions of informal (newspaper) sources to the inventory of relevant records.

Full access
Jiyoun Kim
,
Anita Atwell Seate
,
Brooke F. Liu
,
Daniel Hawblitzel
, and
Theodore Funk

Abstract

Weather warnings are critical risk communication messages because they have the potential to save lives and property during emergencies. However, making warning decisions is challenging. While there have been significant advances in technological weather forecasting, recent research suggests that social factors, including communication, influence warning meteorologists’ decisions to warn. We examine the roles of both scientific and social factors in predicting warning meteorologists’ decisions to warn on tornadoes. To do so, we conducted a cross-sectional survey of National Weather Service forecasters and members of management in the southern and the central regions of the United States, as well as conducted a retrospective data analysis of cross-sectional survey data from the central region Tornado Warning Improvement Project. Results reveal that dependency on radar velocity couplet and a variety of social factors predicted decisions to warn.

Full access
Zouheir Mighri
,
Suleman Sarwar
, and
Samuel Asumadu Sarkodie

Abstract

Forests are considered the key factor in controlling climate change and extreme climatic events due to their natural role in carbon abatement. However, twenty-first-century economic development is characterized by intensive resource exploitation, energy intensity, population, and urbanization, and hence it is affecting the natural forest habitat. The persistent deforestation and land degradation with limited sustainable forest management and its related services have long-term effects on environmental sustainability. Here, we investigate the impact of forest and its related services on the past decade of China’s carbon emissions while accounting for economic development, urbanization, and fossil fuels. We use several spatial techniques to ascertain the carbon abatement effect of the forestry-driven economy in halting the ecological degradation process. We report that carbon emissions decline across 30 provinces in China through the expansion of forest investment and forest management activities—instead of increasing the forest land without continuous proper management. Besides, the spatial analysis confirms that forest investments and proper management contribute to reducing carbon levels in neighboring provinces. From a policy point of view, it is more than an urgent need for the Chinese government to conduct forest management reforms, and such policies might be helpful to generate new sources of employment and pollution reduction in China.

Full access
Lauren Hodgson
,
Gabriela Fernando
, and
Nina Lansbury

Abstract

For many people living in low-income coastal communities, marine resources provide a crucial source of animal protein and are of major nutritional importance. However, because of various human-induced pressures, such as overfishing and poor resource management, marine resources are deteriorating at an unprecedented rate. Climate change effects this dynamic by contributing directly to marine resource deterioration and acting as an effect multiplier, worsening already-present problems in the systems. This deterioration threatens the viability of marine resources to support future food security demands and presents multiple health implications for coastal communities that rely upon these resources. This research used a narrative review to explore how the impacts of climate change are projected to impact human health and sustainable development throughout subsistence fishing communities. A case study approach focusing on the Pacific Ocean region of Micronesia was conducted to provide a practical indication of the future scenario applicable to other geographical regions across the globe. The results indicate that climate change is likely to exacerbate adverse health outcomes such as food insecurity, ciguatera fish poisoning, heatstroke, and mental health problems and that climate change may lead to the deterioration of traditional cultural practices. As the climate crisis is happening now and will be an issue extending into the foreseeable future, it is necessary to implement adaptation strategies, funding, and governance to limit global emissions, preserve marine resources, and support human well-being. Therefore, this research details adaptation strategies, such as diversifying fish catch and reviving traditional postharvest preservation methods, that may help communities adapt to climate change.

Significance Statement

The Sixth Assessment Report by the Intergovernmental Panel on Climate Change (2021) has indicated that marine resources are deteriorating at an unprecedented rate across all regions of the globe. As marine resources significantly contribute to feeding coastal–semisubsistence communities, it is beneficial to understand how this deterioration will affect human health. Thus, this research indicates that declines in marine resources may exacerbate the prevalence of food insecurity, ciguatera fish poisoning, heat-related illnesses, mental health problems, and chronic diseases within marine-dependent communities. Furthermore, this research details adaptation strategies such as diversifying fish catch, improving postharvest preservation methods, and offering counseling services, which may help support the health and well-being of marine-dependent communities.

Full access
Jonathan Salerno
,
Karen Bailey
,
Jeremy Diem
,
Bronwen Konecky
,
Ryan Bridges
,
Shamilah Namusisi
,
Robert Bitariho
,
Michael Palace
, and
Joel Hartter

Abstract

People’s observations of climate change and its impacts, mediated by cultures and capacities, shape adaptive responses. Adaptation is critical in regions of rainfed smallholder agriculture where changing rainfall patterns have disproportionate impacts on livelihoods, yet scientific climate data to inform responses are often sparse. Despite calls for better integration of local knowledge into adaptation frameworks, there is a lack of empirical evidence linking both smallholder climate observations and scientific data to on-farm outcomes. We combine smallholder observations of past seasonal rainfall timing with satellite-based rainfall estimates in Uganda to explore whether farmers’ ability to track climate patterns is associated with higher crop yields. We show that high-fidelity tracking, or alignment of farmer recall with recent rainfall patterns, predicts higher yields in the present year, suggesting that farmers may translate their cumulative record of environmental knowledge into productive on-farm decisions, such as crop selection and timing of planting. However, tracking of less-recent rainfall (i.e., 1–2 decades in the past) does not predict higher yields in the present, while climate data indicate significant trends over this period toward warmer and wetter seasons. Our findings demonstrate the value of smallholder knowledge systems in filling information gaps in climate science while suggesting ways to improve adaptive capacity to climate change.

Full access