Browse

You are looking at 11 - 20 of 20 items for :

  • 12th International Precipitation Conference (IPC12) x
  • Refine by Access: Content accessible to me x
Clear All
Abby Stevens
,
Rebecca Willett
,
Antonios Mamalakis
,
Efi Foufoula-Georgiou
,
Alejandro Tejedor
,
James T. Randerson
,
Padhraic Smyth
, and
Stephen Wright

Abstract

Understanding the physical drivers of seasonal hydroclimatic variability and improving predictive skill remains a challenge with important socioeconomic and environmental implications for many regions around the world. Physics-based deterministic models show limited ability to predict precipitation as the lead time increases, due to imperfect representation of physical processes and incomplete knowledge of initial conditions. Similarly, statistical methods drawing upon established climate teleconnections have low prediction skill due to the complex nature of the climate system. Recently, promising data-driven approaches have been proposed, but they often suffer from overparameterization and overfitting due to the short observational record, and they often do not account for spatiotemporal dependencies among covariates (i.e., predictors such as sea surface temperatures). This study addresses these challenges via a predictive model based on a graph-guided regularizer that simultaneously promotes similarity of predictive weights for highly correlated covariates and enforces sparsity in the covariate domain. This approach both decreases the effective dimensionality of the problem and identifies the most predictive features without specifying them a priori. We use large ensemble simulations from a climate model to construct this regularizer, reducing the structural uncertainty in the estimation. We apply the learned model to predict winter precipitation in the southwestern United States using sea surface temperatures over the entire Pacific basin, and demonstrate its superiority compared to other regularization approaches and statistical models informed by known teleconnections. Our results highlight the potential to combine optimally the space–time structure of predictor variables learned from climate models with new graph-based regularizers to improve seasonal prediction.

Open access
Clément Guilloteau
,
Antonios Mamalakis
,
Lawrence Vulis
,
Phong V. V. Le
,
Tryphon T. Georgiou
, and
Efi Foufoula-Georgiou

Abstract

Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3–60-day periods) in both GPH and SST and El Niño–Southern Oscillation (ENSO) at low frequencies (2–7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics.

Open access
Nobuyuki Utsumi
,
F. Joseph Turk
,
Ziad S. Haddad
,
Pierre-Emmanuel Kirstetter
, and
Hyungjun Kim

Abstract

Precipitation estimation based on passive microwave (MW) observations from low-Earth-orbiting satellites is one of the essential variables for understanding the global climate. However, almost all validation studies for such precipitation estimation have focused only on the surface precipitation rate. This study investigates the vertical precipitation profiles estimated by two passive MW-based retrieval algorithms, i.e., the emissivity principal components (EPC) algorithm and the Goddard profiling algorithm (GPROF). The passive MW-based condensed water content profiles estimated from the Global Precipitation Measurement Microwave Imager (GMI) are validated using the GMI + Dual-Frequency Precipitation Radar combined algorithm as the reference product. It is shown that the EPC generally underestimates the magnitude of the condensed water content profiles, described by the mean condensed water content, by about 20%–50% in the middle-to-high latitudes, while GPROF overestimates it by about 20%–50% in the middle-to-high latitudes and more than 50% in the tropics. Part of the EPC magnitude biases is associated with the representation of the precipitation type (i.e., convective and stratiform) in the retrieval algorithm. This suggests that a separate technique for precipitation type identification would aid in mitigating these biases. In contrast to the magnitude of the profile, the profile shapes are relatively well represented by these two passive MW-based retrievals. The joint analysis between the estimation performances of the vertical profiles and surface precipitation rate shows that the physically reasonable connections between the surface precipitation rate and the associated vertical profiles are achieved to some extent by the passive MW-based algorithms.

Open access
Allison E. Goodwell

Abstract

The spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We identify “dominant directions of precipitation influence” across the continental United States based on a gridded daily dataset. Specifically, we apply information theory–based measures that characterize dominant directions and strengths of spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent direction of weather movement from west to east across the country, but regional differences reflect topographic divides, precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a framework of information-based predictability to answer questions about spatial connectivity in addition to temporal persistence. The methods presented here are generally useful to understand many aspects of weather and climate variability.

Full access
Phu Nguyen
,
Mohammed Ombadi
,
Vesta Afzali Gorooh
,
Eric J. Shearer
,
Mojtaba Sadeghi
,
Soroosh Sorooshian
,
Kuolin Hsu
,
David Bolvin
, and
Martin F. Ralph

Abstract

This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-global, infrared-based precipitation estimates at 0.04° × 0.04° spatial resolution with a short latency (15–60 min). It is intended to supersede the PERSIANN–Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near-real-time product of the PERSIANN family. We first provide a brief description of the algorithm’s fundamentals and the input data used for deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly, daily, and subdaily scales. Last, the article presents information on the dissemination of the dataset through the Center for Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period 2017–18, demonstrates the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now improves the estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared to 0.47 of PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation as well as regional precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as subdaily precipitation rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.

Open access
Chandra Rupa Rajulapati
,
Simon Michael Papalexiou
,
Martyn P. Clark
,
Saman Razavi
,
Guoqiang Tang
, and
John W. Pomeroy

Abstract

Global gridded precipitation products have proven essential for many applications ranging from hydrological modeling and climate model validation to natural hazard risk assessment. They provide a global picture of how precipitation varies across time and space, specifically in regions where ground-based observations are scarce. While the application of global precipitation products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC, PERSIANN-CDR, and WFDEI) are compared to each other and to surface observations. The spatial variability of relatively high precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were evaluated for the time period 1979–2017. The analysis shows that 1) these products do not provide a consistent representation of the behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of the tail heaviness generally match the Köppen–Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years differ significantly among the gridded products. More generally, our findings reveal shortcomings of global precipitation products in representing extremes and highlight that there is no single global product that performs best for all regions and climates.

Full access
Zhe Li
,
Daniel B. Wright
,
Sara Q. Zhang
,
Dalia B. Kirschbaum
, and
Samantha H. Hartke

Abstract

The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.

Full access
Shruti A. Upadhyaya
,
Pierre-Emmanuel Kirstetter
,
Jonathan J. Gourley
, and
Robert J. Kuligowski

ABSTRACT

The launch of NOAA’s latest generation of geostationary satellites known as the Geostationary Operational Environmental Satellite (GOES)-R Series has opened new opportunities in quantifying precipitation rates. Recent efforts have strived to utilize these data to improve space-based precipitation retrievals. The overall objective of the present work is to carry out a detailed error budget analysis of the improved Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for GOES-R and the passive microwave (MW) combined (MWCOMB) precipitation dataset used to calibrate it with an aim to provide insights regarding strengths and weaknesses of these products. This study systematically analyzes the errors across different climate regions and also as a function of different precipitation types over the conterminous United States. The reference precipitation dataset is Ground-Validation Multi-Radar Multi-Sensor (GV-MRMS). Overall, MWCOMB reveals smaller errors as compared to SCaMPR. However, the analysis indicated that that the major portion of error in SCaMPR is propagated from the MWCOMB calibration data. The major challenge starts with poor detection from MWCOMB, which propagates in SCaMPR. In particular, MWCOMB misses 90% of cool stratiform precipitation and the overall detection score is around 40%. The ability of the algorithms to quantify precipitation amounts for the Warm Stratiform, Cool Stratiform, and Tropical/Stratiform Mix categories is poor compared to the Convective and Tropical/Convective Mix categories with additional challenges in complex terrain regions. Further analysis showed strong similarities in systematic and random error models with both products. This suggests that the potential of high-resolution GOES-R observations remains underutilized in SCaMPR due to the errors from the calibrator MWCOMB.

Free access
Veljko Petković
,
Marko Orescanin
,
Pierre Kirstetter
,
Christian Kummerow
, and
Ralph Ferraro

Abstract

A decades-long effort in observing precipitation from space has led to continuous improvements of satellite-derived passive microwave (PMW) large-scale precipitation products. However, due to a limited ability to relate observed radiometric signatures to precipitation type (convective and stratiform) and associated precipitation rate variability, PMW retrievals are prone to large systematic errors at instantaneous scales. The present study explores the use of deep learning approach in extracting the information content from PMW observation vectors to help identify precipitation types. A deep learning neural network model (DNN) is developed to retrieve the convective type in precipitating systems from PMW observations. A 12-month period of Global Precipitation Measurement mission Microwave Imager (GMI) observations is used as a dataset for model development and verification. The proposed DNN model is shown to accurately predict precipitation types for 85% of total precipitation volume. The model reduces precipitation rate bias associated with convective and stratiform precipitation in the GPM operational algorithm by a factor of 2 while preserving the correlation with reference precipitation rates, and is insensitive to surface type variability. Based on comparisons against currently used convective schemes, it is concluded that the neural network approach has the potential to address regime-specific PMW satellite precipitation biases affecting GPM operations.

Full access
Stephen E. Lang
and
Wei-Kuo Tao

Abstract

The Goddard convective–stratiform heating (CSH) algorithm, used to estimate cloud heating in support of the Tropical Rainfall Measuring Mission (TRMM), is upgraded in support of the Global Precipitation Measurement (GPM) mission. The algorithm’s lookup tables (LUTs) are revised using new and additional cloud-resolving model (CRM) simulations from the Goddard Cumulus Ensemble (GCE) model, producing smoother heating patterns that span a wider range of intensities because of the increased sampling and finer GPM product grid. Low-level stratiform cooling rates are reduced in the land LUTs for a given rain intensity because of the rain evaporation correction in the new four-class ice (4ICE) scheme. Additional criteria, namely, echo-top heights and low-level reflectivity gradients, are tested for the selection of heating profiles. Those resulting LUTs show greater and more precise variation in their depth of heating as well as a tendency for stronger cooling and heating rates when low-level dBZ values decrease toward the surface. Comparisons versus TRMM for a 3-month period show much more low-level heating in the GPM retrievals because of increased detection of shallow convection, while upper-level heating patterns remain similar. The use of echo tops and low-level reflectivity gradients greatly reduces midlevel heating from ~2 to 5 km in the mean GPM heating profile, resulting in a more top-heavy profile like TRMM versus a more bottom-heavy profile with much more midlevel heating. Integrated latent heating rates are much better balanced versus surface rainfall for the GPM retrievals using the additional selection criteria with an overall bias of +4.3%.

Full access