Browse

You are looking at 11 - 13 of 13 items for :

  • TRMM Diabatic Heating x
  • Refine by Access: Content accessible to me x
Clear All
Xianan Jiang, Duane E. Waliser, William S. Olson, Wei-Kuo Tao, Tristan S. L’Ecuyer, Jui-Lin Li, Baijun Tian, Yuk L. Yung, Adrian M. Tompkins, Stephen E. Lang, and Mircea Grecu

Abstract

The Madden–Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999.

The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models.

Full access
Shoichi Shige, Yukari N. Takayabu, Satoshi Kida, Wei-Kuo Tao, Xiping Zeng, Chie Yokoyama, and Tristan L’Ecuyer

Abstract

The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables (LUTs). LUTs for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) using a cloud-resolving model (CRM).

The two-dimensional (2D) CRM was used in previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional (3D) CRM simulations for multiday periods becoming increasingly prevalent. In this study, LUTs from the 2D and 3D simulations are compared. Using the LUTs from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based heating for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived maximum heating. This is explained by the fact that using the 3D LUTs results in stronger convective heating and weaker stratiform heating above the melting level than is the case if using the 2D LUTs. More condensate is generated in and carried from the convective region in the 3D model than in the 2D model, and less condensate is produced by the stratiform region’s own upward motion.

Full access
Yasu-Masa Kodama, Masaki Katsumata, Shuichi Mori, Sinsuke Satoh, Yuki Hirose, and Hiroaki Ueda

Abstract

The large-scale distribution of precipitation and latent heating (LH) profiles in the tropics, subtropics, and part of the midlatitudes was studied using a 9-yr dataset derived from Tropical Rainfall Measuring Mission precipitation radar observations, with emphasis on the contribution of warm rain. The distribution of warm rain showed features unique from those of rain in other categories and those of outgoing longwave radiation. Warm rain was weak over land but widely distributed over oceans, especially along the intertropical convergence zone (ITCZ) and the western part of the subtropical oceans. The observed amount of warm rain depended on the rainfall intensity rather than on the frequency of warm rain events. The amount of warm rain over ocean was positively correlated with sea surface temperature (SST); this dependency was found in the tropics, subtropics, and part of the midlatitudes, whereas dependency of SST on total rain was confined to the tropics. Both total rain and warm rain were concentrated in the ITCZ, which elongated along the local SST maximum. Small amounts of warm rain were found along subtropical convergence zones (the baiu frontal zone and subtropical portions of the South Pacific convergence zone and the South Atlantic convergence zone) with ample total rainfall. However, larger amounts of warm rain were observed at the lower-latitude sides of these zones in the upstream portions of low-level moisture flow toward the zones. Warm rain may cultivate the subtropical convergence zones by deepening the moist boundary layer and increasing moisture flux toward the zones. The statistical relationship between warm rain and low-level cloudiness showed that the warm rain amount was large when low-level cloudiness was 20%–30% and small when low-level cloudiness was greater than 40%. This indicates that intense warm rain is provided by convective clouds, not by stratiform clouds, in conditions of substantial cloudiness. Despite the small contribution to total rain, warm rain maintained positive LH values over most of the tropical and subtropical oceans. The LH by warm rain masked low-level cooling observed in stratiform rain and maintained positive LH in the lower atmosphere below the melting layer. Because warm rain was confined to oceans, a strong LH contrast was maintained along the coast; this contrast reached values of 1–2 K day−1 in certain places and may affect local and monsoonal circulation across continental coasts.

Full access