Browse

You are looking at 11 - 20 of 2,480 items for :

  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All
Balaji Kumar Seela
,
Jayalakshmi Janapati
,
Pay-Liam Lin
,
Chen-Hau Lan
, and
Mu-Qun Huang

Abstract

Global precipitation demonstrates a substantial role in the hydrological cycle and offers tremendous implications in hydrometeorological studies. Advanced remote sensing instrumentations, such as the NASA Global Precipitation Measurement (GPM) mission Dual-Frequency Precipitation Radar (DPR), can estimate precipitation and cloud properties and have a unique capability to estimate the raindrop size information globally at snapshots in time. The present study validates the Level-2 data products of the GPM DPR with the long-term measurements of seven north Taiwan Joss–Waldvogel disdrometers from 2014 to 2022. The precipitation and drop size distribution parameters like rainfall rate (R; mm h−1), radar reflectivity factor (dBZ), mass-weighted mean drop diameter (Dm ; mm), and normalized intercept parameter (Nw ; m−3 mm−1) of the GPM DPR are compared with the disdrometers. Four different comparison approaches (point match, 5-km average, 10-km average, and optimal method) are used for the validation; among these four, the optimal strategy provided reasonable agreement between the GPM DPR and the disdrometers. The GPM DPR revealed superior performance in estimating the rain parameters in stratiform precipitation than the convective precipitation. Irrespective of algorithm type (dual- or single-frequency algorithm), sensitivity analysis revealed superior agreement for the mass-weighted mean diameter and inferior agreement for the normalized intercept parameter.

Open access
Alida Thiombiano
,
Alain Pietroniro
,
Tricia Stadnyk
,
Hyung Eum
,
Babak Farjad
,
Anil Gupta
, and
Barrie Bonsal

Abstract

Freshwater supplies in most western Canadian watersheds are threatened by the warming of temperatures because it alters the snow-dominated hydrologic patterns that characterize these cold regions. In this study, we used datasets from 12 climate simulations, which are associated with seven global climate models and four future scenarios and are participating in phase 6 of the Coupled Model Intercomparison Project, to calculate and assess the historical and future temporal patterns of 13 hydroclimate indicators relevant to water resources management. We conducted linear long-term trend and change analyses on their annual time series to provide insight into the potential regional impacts of the detected changes on water availability for all users. We implemented our framework on the Alberta oil sands region in Canada to support the monitoring of environmental changes in this region, relative to the established baseline 1985–2014. Our analysis indicates a persistent increase in the occurrence of extreme hot temperatures, fewer extreme cold temperatures, and an increase in warm spells and heatwaves, while precipitation-related indices show minor changes. Consequently, deficits in regional water availability during summer and water-year periods, as depicted by the standardized precipitation evapotranspiration indices, are expected. The combined effects of the strong climate warming signals and the small increases in precipitation annual amounts generally detected in this study suggest that drier conditions may become severe and frequent in the Alberta oil sands region. The challenging climate change risks identified for this region should therefore be continuously monitored, updated, and integrated to support a sustainable management for all water users.

Open access
Pei-Ning Feng
,
Stéphane Bélair
,
Dikraa Khedhaouiria
,
Franck Lespinas
,
Eva Mekis
, and
Julie M. Thériault

Abstract

The Canadian Precipitation Analysis System (CaPA) is an operational system that uses a combination of weather gauge and ground-based radar measurements together with short-term forecasts from a numerical weather model to provide near-real-time estimates of 6- and 24-h precipitation amounts. During the winter season, many gauge measurements are rejected by the CaPA quality control process because of the wind-induced undercatch for solid precipitation. The goal of this study is to improve the precipitation estimates over central Canada during the winter seasons from 2019 to 2022. Two approaches were tested. First, the quality control procedure in CaPA has been relaxed to increase the number of surface observations assimilated. Second, the automatic solid precipitation measurements were adjusted using a universal transfer function to compensate for the undercatch problem. Although increasing the wind speed threshold resulted in lower amounts and worse biases in frequency, the overall precipitation estimates are improved as the equitable threat score is improved because of a substantial decrease in the false alarm ratio, which compensates the degradation of the probability of detection. The increase of solid precipitation amounts using a transfer function improves the biases in both frequency and amounts and the probability of detection for all precipitation thresholds. However, the false alarm ratio deteriorates for large thresholds. The statistics vary from year to year, but an overall improvement is demonstrated by increasing the number of stations and adjusting the solid precipitation amounts for wind speed undercatch.

Open access
Michel Bechtold
,
Sara Modanesi
,
Hans Lievens
,
Pierre Baguis
,
Isis Brangers
,
Alberto Carrassi
,
Augusto Getirana
,
Alexander Gruber
,
Zdenko Heyvaert
,
Christian Massari
,
Samuel Scherrer
,
Stéphane Vannitsem
, and
Gabrielle De Lannoy

Abstract

Accurate streamflow simulations rely on good estimates of the catchment-scale soil moisture distribution. Here, we evaluated the potential of Sentinel-1 backscatter data assimilation (DA) to improve soil moisture and streamflow estimates. Our DA system consisted of the Noah-MP land surface model coupled to the HyMAP river routing model and the water cloud model as a backscatter observation operator. The DA system was set up at 0.01° resolution for two contrasting catchments in Belgium: (i) the Demer catchment dominated by agriculture and (ii) the Ourthe catchment dominated by mixed forests. We present the results of two experiments with an ensemble Kalman filter updating either soil moisture only or soil moisture and leaf area index (LAI). The DA experiments covered the period from January 2015 through August 2021 and were evaluated with independent rainfall error estimates based on station data, LAI from optical remote sensing, soil moisture retrievals from passive microwave observations, and streamflow measurements. Our results indicate that the assimilation of Sentinel-1 backscatter observations can partly correct errors in surface soil moisture due to rainfall errors and overall improve surface soil moisture estimates. However, updating soil moisture and LAI simultaneously did not bring any benefit over updating soil moisture only. Our results further indicate that streamflow estimates can be improved through Sentinel-1 DA in a catchment with strong soil moisture–runoff coupling, as observed for the Ourthe catchment, suggesting that there is potential for Sentinel-1 DA even for forested catchments.

Significance Statement

The purpose of this study is to improve streamflow estimation by integrating soil moisture information from satellite observations into a hydrological modeling framework. This is important preparatory work for operational centers that are responsible for producing the most accurate flood forecasts for the society. Our results provide new insights into how and where streamflow forecasting could benefit from high-spatial-resolution Sentinel-1 radar backscatter observations.

Open access
Peter E. Goble
and
Russ S. Schumacher

Abstract

Annual spring and summer runoff from western Colorado is relied upon by 40 million people, six states, and two countries. Cool season precipitation and snowpack have historically been robust predictors of seasonal runoff in western Colorado. Forecasts made with this information allow water managers to plan for the season ahead. Antecedent hydrological conditions, such as root zone soil moisture and groundwater storage, and weather conditions following peak snowpack also impact seasonal runoff. The roles of such factors were scrutinized in 2020 and 2021: seasonal runoff was much lower than expectations based on snowpack values alone. We investigate the relative importance of meteorological and hydrological conditions occurring before and after the snowpack season in predicting seasonal runoff in western Colorado. This question is critical because the most effective investment strategy for improving forecasts depends on if errors arise before or after the snowpack season. This study is conducted using observations from the Snow Telemetry Network, root zone soil moisture and groundwater data from the Western Land Data Assimilation Systems, and a random forest–based statistical forecasting framework. We find that on average, antecedent root zone soil moisture and groundwater storage values do not add significant skill to seasonal water supply forecasts in western Colorado. In contrast, using precipitation and temperature data after the time of peak snowpack improves water supply forecasts significantly. The 2020 and 2021 runoffs were hampered by dry conditions both before and after the snowpack season. Both antecedent soil moisture and spring/summer precipitation data improved water supply forecast accuracy in these years.

Significance Statement

Seasonal water supply forecasts in western Colorado are highly valuable because spring and summer runoff from this region helps support the water supply of 40 million people. Accurate forecasts improve the management of the region’s water. Heavy investments have been made in improving our ability to monitor antecedent hydrological conditions in western Colorado, such as root zone soil moisture and groundwater. However, results from this study indicate that the largest source of uncertainty in western Colorado runoff forecasts is future weather. Therefore, improved subseasonal-to-seasonal weather forecasts for western Colorado are what is most needed to improve regional water supply forecasts, and the ability to properly manage western Colorado water.

Open access
Zhi-Weng Chua
,
Yuriy Kuleshov
,
Andrew B. Watkins
,
Suelynn Choy
, and
Chayn Sun

Abstract

Satellites provide a useful way of estimating rainfall where the availability of in situ data is low but their indirect nature of estimation means there can be substantial biases. Consequently, the assimilation of in situ data is an important step in improving the accuracy of the satellite rainfall analysis. The effectiveness of this step varies with gauge density, and this study investigated the effectiveness of statistical interpolation (SI), also known as optimal interpolation (OI), on a monthly time scale when gauge density is extremely low using Papua New Guinea (PNG) as a study region. The topography of the region presented an additional challenge to the algorithm. An open-source implementation of SI was developed on Python 3 and confirmed to be consistent with an existing implementation, addressing a lack of open-source implementation for this classical algorithm. The effectiveness of the analysis produced by this algorithm was then compared to the pure satellite analysis over PNG from 2001 to 2014. When performance over the entire study domain was considered, the improvement from using SI was close to imperceptible because of the small number of stations available for assimilation and the small radius of influence of each station (imposed by the topography present in the domain). However, there was still value in using OI as performance around each of the stations was noticeably improved, with the error consistently being reduced along with a general increase in the correlation metric. Furthermore, in an operational context, the use of OI provides an important function of ensuring consistency between in situ data and the gridded analysis.

Significance Statement

The blending of satellite and gauge rainfall data through a process known as statistical interpolation (SI) is known to be capable of producing a more accurate dataset that facilitates better estimation of rainfall. However, the performance of this algorithm over a domain such as Papua New Guinea, where gauge density is extremely low, is not often explored. This study reveals that, although an improvement over the entire Papua New Guinea domain was slight, the algorithm is still valuable as there was a consistent improvement around the stations. Additionally, an adaptable and open-source version of the algorithm is provided, allowing users to blend their own satellite and gauge data and create better geospatial datasets for their own purposes.

Open access
Chak-Hau Michael Tso
,
Eleanor Blyth
,
Maliko Tanguy
,
Peter E. Levy
,
Emma L. Robinson
,
Victoria Bell
,
Yuanyuan Zha
, and
Matthew Fry

Abstract

The persistence or memory of soil moisture (θ) after rainfall has substantial environmental implications. Much work has been done to study soil moisture drydown for in situ and satellite data separately. In this work, we present a comparison of drydown characteristics across multiple U.K. soil moisture products, including satellite-merged (i.e., TCM), in situ (i.e., COSMOS-UK), hydrological model [i.e., Grid-to-Grid (G2G)], statistical model [i.e., Soil Moisture U.K. (SMUK)], and land surface model (LSM) [i.e., Climate Hydrology and Ecology research Support System (CHESS)] data. The drydown decay time scale (τ) for all gridded products is computed at an unprecedented resolution of 1–2 km, a scale relevant to weather and climate models. While their range of τ differs (except SMUK and CHESS are similar) due to differences such as sensing depths, their spatial patterns are correlated to land cover and soil types. We further analyze the occurrence of drydown events at COSMOS-UK sites. We show that soil moisture drydown regimes exhibit strong seasonal dependencies, whereby the soil dries out quicker in summer than winter. These seasonal dependencies are important to consider during model benchmarking and evaluation. We show that fitted τ based on COSMOS and LSM are well correlated, with a bias of lower τ for COSMOS. Our findings contribute to a growing body of literature to characterize τ, with the aim of developing a method to systematically validate model soil moisture products at a range of scales.

Significance Statement

While important for many aspects of the environment, the evaluation of modeled soil moisture has remained incredibly challenging. Sensors work at different space and time scales to the models, the definitions of soil moisture vary between applications, and the soil moisture itself is subject to the soil properties while the impact of the soil moisture on evaporation or river flow is more dependent on its variation in time and space than its absolute value. What we need is a method that allows us to compare the important features of soil moisture rather than its value. In this study, we choose to study drydown as a way to capture and compare the behavior of different soil moisture data products.

Open access
Craig A. Ramseyer
and
Paul W. Miller

Abstract

Despite the intensifying interest in flash drought both within the United States and globally, moist tropical landscapes have largely escaped the attention of the flash drought community. Because these ecozones are acclimatized to receiving regular, near-daily precipitation, they are especially vulnerable to rapid-drying events. This is particularly true within the Caribbean Sea basin where numerous small islands lack the surface and groundwater resources to cope with swiftly developing drought conditions. This study fills the tropical flash drought gap by examining the pervasiveness of flash drought across the pan-Caribbean region using a recently proposed criterion based on the evaporative demand drought index (EDDI). The EDDI identifies 46 instances of widespread flash drought “outbreaks” in which significant fractions of the pan-Caribbean encounter rapid drying over 15 days and then maintain this condition for another 15 days. Moreover, a self-organizing maps (SOM) classification reveals a tendency for flash drought to assume recurring typologies concentrated in one of the Central American, South American, or Greater Antilles coastlines, although a simultaneous, Caribbean-wide drought is never observed within the 40-yr (1981–2020) period examined. Furthermore, three of the six flash drought typologies identified by the SOM initiate most often during Phase 2 of the Madden–Julian oscillation. Collectively, these findings motivate the need to more critically examine the transferability of flash drought definitions into the global tropics, particularly for small water-vulnerable islands where even island-wide flash droughts may only occupy a few pixels in most reanalysis datasets.

Significance Statement

The purpose of this study is to understand if flash drought occurs in tropical environments, specifically the Caribbean. Flash droughts represent a quickly evolving drought, which have particularly acute impacts on agriculture and often catch stakeholders by surprise as conditions evolve rapidly from wet to dry conditions. Our results indicate that flash droughts occur with regular periodicity in the Caribbean. Expansive flash droughts tend to occur in coherent subregional clusters. Future studies will further investigate the drivers of these flash droughts to create early warning systems for flash drought.

Open access
Lois I. Tang
and
Kaighin A. McColl

Abstract

The historical rise of irrigation has profoundly mitigated the effect of drought on agriculture in many parts of the United States. While irrigation directly alters soil moisture, meteorological drought indices ignore the effects of irrigation, since they are often based on simple water balance models that neglect the irrigation input. Reanalyses also largely neglect irrigation. Other approaches estimate the evaporative fraction (EF), which is correlated with soil moisture under water-limited conditions typical of droughts, with lower values corresponding to drier soils. However, those approaches require satellite observations of land surface temperature, meaning they cannot be used to study droughts prior to the satellite era. Here, we use a recent theory of land–atmosphere coupling—surface flux equilibrium (SFE) theory—to estimate EF from readily available observations of near-surface air temperature and specific humidity with long historical records. In contrast to EF estimated from a reanalysis that largely neglects irrigation, the SFE-predicted EF is greater at irrigated sites than at nonirrigated sites during droughts, and its historical trends are typically consistent with the spatial distribution of irrigation growth. Two sites at which SFE-predicted EF unexpectedly rises in the absence of changes in irrigation can be explained by increased flooding due to human interventions unrelated to irrigation (river engineering and the expansion of fish hatcheries). This work introduces a new method for quantifying agricultural drought prior to the satellite era. It can be used to provide insight into the role of irrigation in mitigating drought in the United States over the twentieth century.

Significance Statement

Irrigation grew profoundly in the United States over the twentieth century, increasing the resilience of American agriculture to drought. Yet observational records of agricultural drought, and its response to irrigation, are limited to the satellite era. Here, we show that a common measure of agricultural drought (the evaporative fraction, EF) can be estimated using widespread weather data, extending the agricultural drought record decades further back in time. We show that EF estimated using our approach is both sensitive and specific to the occurrence of irrigation, unlike an alternative derived from a reanalysis.

Open access
Guo Yu
,
Benjamin J. Hatchett
,
Julianne J. Miller
,
Markus Berli
,
Daniel B. Wright
, and
John F. Mejia

Abstract

In the arid and semiarid southwestern United States, both cool- and warm-season storms result in flash flooding, although the former storms have been much less studied. Here, we investigate a catalog of 52 flash-flood-producing storms over the 1996–2021 period for the arid Las Vegas Wash watershed using rain gauge observations, reanalysis fields, radar reflectivities, cloud-to-ground lightning flashes, and streamflow records. Our analyses focus on the hydroclimatology, convective intensity, and evolution of these storms. At the synoptic scale, cool-season storms are associated with open wave and cutoff low weather patterns, whereas warm-season storms are linked to classic and troughing North American monsoon (NAM) patterns. At the storm scale, cool-season events are southwesterly and southeasterly under open wave and cutoff low conditions, respectively, with long duration and low to moderate rainfall intensity. Warm-season storms, however, are characterized by short-duration, high-intensity rainfall, with either no apparent direction or southwesterly under classic and troughing NAM patterns, respectively. Atmospheric rivers and deep convection are the principal agents for the extreme rainfall and upper-tail flash floods in cool and warm seasons, respectively. Additionally, intense rainfall over the developed low valley is imperative for urban flash flooding. The evolution properties of seasonal storms and the resulting streamflows show that peak flows of comparable magnitude are “intensity driven” in the warm season but “volume driven” in the cool season. Furthermore, the distinctive impacts of complex terrain and climate change on rainfall properties are discussed with respect to storm seasonality.

Open access