Browse

You are looking at 11 - 20 of 56 items for :

  • Years of the Maritime Continent x
  • Refine by Access: Content accessible to me x
Clear All
Sopia Lestari
,
Andrew King
,
Claire Vincent
,
Alain Protat
,
David Karoly
, and
Shuichi Mori

Abstract

Research on the interaction between the Madden–Julian oscillation (MJO) and rainfall around Jakarta is limited, although the influence of the MJO on increased rainfall is acknowledged as one of the primary causes of flooding in the region. This paper investigates the local rainfall response around Jakarta to the MJO. We used C-band Doppler radar in October–April during 2009–12 to study rain-rate characteristics at much higher resolution than previous analyses. Results show that the MJO strongly modulates rain rates over the region; however, its effect varies depending on topography. During active phases, MJO induces a high rain rate over the ocean and coast, meanwhile during suppressed phases, it generates a high rain rate mainly over the mountains. In phase 2 of the MJO we find the strongest increase in mean and extreme rain rate, which is earlier in the MJO cycle than most studies reported, based on lower-resolution data. This higher rain rate is likely due to increases in convective and stratiform activities. The MJO promotes more stratiform rain once it resides over Indonesia. In phase 5, over the northwestern coast and western part of the radar domain, the MJO might bring forward the peak of the hourly rain rate that occurs in the early morning. This is likely due to a strong westerly flow arising from MJO superimposed westerly monsoonal flow, blocked by the mountains, inducing a strong wind propagating offshore resulting in convection near the coast in the morning. Our study demonstrates the benefits of using high-resolution radar for capturing local responses to the larger-scale forcing of the MJO in Indonesia.

Significance Statement

Rainfall in Jakarta and its surroundings is highly variable and often heavy resulting in devastating floods. In this region, in the wet season, rainfall is influenced by large-scale climate variability including the Madden–Julian oscillation (MJO) characterized by eastward propagation of clouds near the equatorial regions on intraseasonal time scales. The MJO has been known to increase the probability of rainfall occurrence and its magnitude, but we show that the impact differs in varying topography. The frequency and intensity of rainfall increase over land areas including mountains even when MJO has not arrived in Indonesia. Meanwhile, once MJO moves through Indonesia, the frequency and magnitude of the rainfall increases over the northern coast and ocean as well as in the west of the radar domain.

Full access
Sang-Ki Lee
,
Hosmay Lopez
,
Gregory R. Foltz
,
Eun-Pa Lim
,
Dongmin Kim
,
Sarah M. Larson
,
Kandaga Pujiana
,
Denis L. Volkov
,
Soumi Chakravorty
, and
Fabian A. Gomez

Abstract

A phenomenon referred to here as Java–Sumatra Niño/Niña (JSN or JS Niño/Niña) is characterized by the appearance of warm/cold sea surface temperature anomalies (SSTAs) in the coastal upwelling region off Java–Sumatra in the southeastern equatorial Indian Ocean. JSN develops in July–September and sometimes as a precursor to the Indian Ocean dipole, but often without corresponding SSTAs in the western equatorial Indian Ocean. Although its spatiotemporal evolution varies considerably between individual events, JSN is essentially an intrinsic mode of variability driven by local atmosphere–ocean positive feedback, and thus does not rely on remote forcing from the Pacific for its emergence. JSN is an important driver of climate variability over the tropical Indian Ocean and the surrounding continents. Notably, JS Niña events developing in July–September project onto the South and Southeast Asian summer monsoons, increasing the probability of heavy rainfall and flooding across the most heavily populated regions of the world.

Full access
Ning Zhao
,
Peiming Wu
,
Satoru Yokoi
, and
Miki Hattori

Abstract

This study investigated the diurnal cycle of convection over Sumatra Island in an active phase of the Madden–Julian oscillation (MJO) during the Pre-Years of the Maritime Continent (YMC) observation campaign in December 2015 based on in situ and satellite observations and a convection-permitting numerical model. Observations suggest that before the active phase of the MJO in early December, convection occurred frequently over the island during the afternoon and at midnight. By contrast, during the active phase of the MJO in mid-December, afternoon convection over the island was delayed and suppressed, and midnight convection was suppressed. Numerical experiments also successfully replicated the main features of the observed modulations. In general, during the active phase of the MJO, the troposphere became drier in the Sumatra region. While the clouds reduced the solar radiation over the land, the sea breeze was also found to be delayed and weakened. As a result, the afternoon convection initiation was delayed and weakened. Further analyses suggested that the sea breeze was weakened mainly due to the orographic stagnation effect rather than the slightly reduced land–sea temperature contrast. On the other hand, the increased stratiform-anvil clouds induced the anomalous evaporative cooling in the midtroposphere and generated island-scale subsidence during the nighttime, which finally led to the suppression of inland convection. Overall, our study reveals the modulation of diurnal convection over Sumatra Island by an active phase of the MJO and also shows the potential role of land–sea interaction in convection initiation and maintenance.

Open access
Shuguang Wang
and
Adam H. Sobel

Abstract

The Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO) are fundamental modes of variability in the tropical atmosphere on the intraseasonal time scale. A linear model, using a moist shallow water equation set on an equatorial beta plane, is developed to provide a unified treatment of the two modes and to understand their growth and propagation over the Indian Ocean. Moisture is assumed to increase linearly with longitude and to decrease quadratically with latitude. Solutions are obtained through linear stability analysis, considering the gravest (n = 1) meridional mode with nonzero meridional velocity. Anomalies in zonal moisture advection and surface fluxes are both proportional to those in zonal wind, but of opposite sign. With observation-based estimates for both effects, the zonal advection dominates, and drives the planetary-scale instability. With a sufficiently small meridional moisture gradient, the horizontal structure exhibits oscillations with latitude and a northwest–southeast horizontal tilt in the Northern Hemisphere, qualitatively resembling the observed BSISO. As the meridional moisture gradient increases, the horizontal tilt decreases and the spatial pattern transforms toward the “swallowtail” structure associated with the MJO, with cyclonic gyres in both hemispheres straddling the equatorial precipitation maximum. These results suggest that the magnitude of the meridional moisture gradient shapes the horizontal structures, leading to the transformation from the BSISO-like tilted horizontal structure to the MJO-like neutral wave structure as the meridional moisture gradient changes with the seasons. The existence and behavior of these intraseasonal modes can be understood as a consequence of phase speed matching between the equatorial mode with zero meridional velocity (analogous to the dry Kelvin wave) and a local off-equatorial component that is characterized by considering an otherwise similar system on an f plane.

Full access
Yun-Lan Chen
,
Chung-Hsiung Sui
,
Chih-Pei Chang
, and
Kai-Chih Tseng

Abstract

This paper studies the influences of the Madden–Julian oscillation (MJO) on East Asian (EA) winter rainfall using the singular value decomposition (SVD) approach. This method uses two-dimensional instead of latitudinally averaged variables in the commonly used real-time multivariate MJO (RMM) index. A comparison of the two approaches is made using the same OLR and zonal wind data over 37 boreal winter seasons of December–March. The SVD composite reveals a more conspicuous and coherent variation throughout the MJO cycle, while the RMM composite is more ambiguous. In particular, the SVD analysis identifies the convection anomalies over the Maritime Continent and the subtropical western Pacific (MCWP) as a major cause of enhanced rainfall in EA at RMM phases 8 and 1. This is at least one-eighth of a cycle earlier than the phases of convection development over the Indian Ocean (IO) that were emphasized by previous studies. A linearized global baroclinic model is used to demonstrate the mechanism of MJO forcing on EA rainfall during various phases, with a focus on the MCWP cooling. The result shows that the anomalous MCWP cooling and the resultant low-level anticyclonic flow interact with the East Asian jet, leading to an overall weakened EA winter monsoon circulation. The associated anomalous overturning circulation, with ascending motion and low-level horizontal moisture convergence in EA, contributes to the enhanced rainfall. This model result supports the interpretation of the SVD analysis, in that the MCWP cooling induced anomalous meridional circulation is a more direct cause of enhanced EA rainfall than the IO heating (or the IO–MCWP heating dipole) induced Rossby wave teleconnection.

Full access
Joshua Chun Kwang Lee
,
Anurag Dipankar
, and
Xiang-Yu Huang

Abstract

The diurnal cycle is the most prominent mode of rainfall variability in the tropics, governed mainly by the strong solar heating and land–sea interactions that trigger convection. Over the western Maritime Continent, complex orographic and coastal effects can also play an important role. Weather and climate models often struggle to represent these physical processes, resulting in substantial model biases in simulations over the region. For numerical weather prediction, these biases manifest themselves in the initial conditions, leading to phase and amplitude errors in the diurnal cycle of precipitation. Using a tropical convective-scale data assimilation system, we assimilate 3-hourly radiosonde data from the pilot field campaign of the Years of Maritime Continent, in addition to existing available observations, to diagnose the model biases and assess the relative impacts of the additional wind, temperature, and moisture information on the simulated diurnal cycle of precipitation over the western coast of Sumatra. We show how assimilating such high-frequency in situ observations can improve the simulated diurnal cycle, verified against satellite-derived precipitation, radar-derived precipitation, and rain gauge data. The improvements are due to a better representation of the sea breeze and increased available moisture in the lowest 4 km prior to peak convection. Assimilating wind information alone was sufficient to improve the simulations. We also highlight how during the assimilation, certain multivariate background error constraints and moisture addition in an ad hoc manner can negatively impact the simulations. Other approaches should be explored to better exploit information from such high-frequency observations over this region.

Open access
Biao Geng
and
Masaki Katsumata

Abstract

In this study, we examined the variations of precipitation morphology and rainfall in relation to the simultaneous passages of a Madden–Julian oscillation (MJO) event and convectively coupled equatorial waves (CCEWs) observed during the Years of the Maritime Continent pilot study. We utilized globally merged infrared brightness temperature data and the radiosonde and radar data observed aboard the Research Vessel Mirai at 4°4′S, 101°54′E. As well as the observed MJO event, equatorial Rossby waves (ERWs), Kelvin waves (KWs), and mixed Rossby–gravity waves (MRGWs) were identified. The radar data exhibited high-frequency variation, mainly caused by KWs and MRGWs, and low-frequency variation, mainly caused by the MJO and ERWs. The MRGWs predominantly modulated convective echo areas and both convective and stratiform volumetric rainfall. In contrast, the MJO event had little influence on the variance of convective echoes. Moreover, stratiform echo areas and volumetric rainfall were more strongly modulated by the combined effects of the MJO, ERWs, KWs, and MRGWs than their convective counterparts. The intense development of stratiform echo areas and volumetric rainfall was coherent with the superimposition of the active phases of the MJO event and all the analyzed CCEWs. The strongest development and a significant reduction of convective echo-top heights before and after the peak MJO date, respectively, were coherent with the passages of ERWs and MRGWs, which were the dominant wave types in modulating echo-top heights. Thus, it appears that the superimposition of the CCEWs on the MJO event exerted complex modulations on the convective activities within the MJO event.

Open access
Daehyun Kang
,
Daehyun Kim
,
Min-Seop Ahn
, and
Soon-Il An

Abstract

This study investigates the role of the background meridional moisture gradient (MMG) on the propagation of the Madden–Julian oscillation (MJO) across the Maritime Continent (MC) region. It is found that the interannual variability of the seasonal mean MMG over the southern MC area is associated with the meridional expansion and contraction of the moist area in the vicinity of the MC. Sea surface temperature anomalies associated with relatively high and low seasonal mean MMG exhibit patterns that resemble those of El Niño–Southern Oscillation. By contrasting the years with anomalously low and high MMG, we show that MJO propagation through the MC is enhanced (suppressed) in years with higher (lower) seasonal mean MMG, although the effect is less robust when MMG anomalies are weak. Column-integrated moisture budget analysis further shows that sufficiently large MMG anomalies affect MJO activity by modulating the meridional advection of the mean moisture via MJO wind anomalies. Our results suggest that the background moisture distribution has a strong control over the propagation characteristics of the MJO in the MC region.

Full access
Lei Zhou
,
Ruomei Ruan
, and
Raghu Murtugudde

Abstract

Madden–Julian oscillations (MJOs) are a major component of tropical intraseasonal variabilities. There are two paths for MJOs across the Maritime Continent; one is a detoured route into the Southern Hemisphere and the other one is around the equator across the Maritime Continent. Here, it is shown that the detoured and nondetoured MJOs have significantly different impacts on the South Pacific convergence zone (SPCZ). The detoured MJOs trigger strong cross-equatorial meridional winds from the Northern Hemisphere into the Southern Hemisphere. The associated meridional moisture and energy transports due to the background states carried by the intraseasonal meridional winds are favorable for reinforcing the SPCZ. In contrast, the influences of nondetoured MJOs on either hemisphere or the meridional transports across the equator are much weaker. The detoured MJOs can extend their impacts to the surrounding regions by shedding Rossby waves. Due to different background vorticity during detoured MJOs in boreal winter, more ray paths of Rossby waves traverse the Maritime Continent connecting the southern Pacific Ocean and the eastern Indian Ocean, but far fewer Rossby wave paths traverse Australia. Further studies on such processes are expected to contribute to a better understanding of extreme climate and natural disasters on the rim of the southern Pacific and Indian Oceans.

Free access
Yuntao Wei
and
Zhaoxia Pu

Abstract

Despite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden–Julian oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO. An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and reevaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud–radiation effect is further enhanced in the convective phase of BSISO.

Full access