Browse

You are looking at 11 - 12 of 12 items for :

  • Journal of Physical Oceanography x
  • Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics x
  • Refine by Access: Content accessible to me x
Clear All
Sebastian Essink
,
Verena Hormann
,
Luca R. Centurioni
, and
Amala Mahadevan

Abstract

A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius L D , which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.

Full access
Dipanjan Chaudhuri
,
Debasis Sengupta
,
Eric D’Asaro
,
R. Venkatesan
, and
M. Ravichandran

Abstract

Cyclone Phailin, which developed over the Bay of Bengal in October 2013, was one of the strongest tropical cyclones to make landfall in India. We study the response of the salinity-stratified north Bay of Bengal to Cyclone Phailin with the help of hourly observations from three open-ocean moorings 200 km from the cyclone track, a mooring close to the cyclone track, daily sea surface salinity (SSS) from Aquarius, and a one-dimensional model. Before the arrival of Phailin, moored observations showed a shallow layer of low-salinity water lying above a deep, warm “barrier” layer. As the winds strengthened, upper-ocean mixing due to enhanced vertical shear of storm-generated currents led to a rapid increase of near-surface salinity. Sea surface temperature (SST) cooled very little, however, because the prestorm subsurface ocean was warm. Aquarius SSS increased by 1.5–3 psu over an area of nearly one million square kilometers in the north Bay of Bengal. A one-dimensional model, with initial conditions and surface forcing based on moored observations, shows that cyclone winds rapidly eroded the shallow, salinity-dominated density stratification and mixed the upper ocean to 40–50-m depth, consistent with observations. Model sensitivity experiments indicate that changes in ocean mixed layer temperature in response to Cyclone Phailin are small. A nearly isothermal, salinity-stratified barrier layer in the prestorm upper ocean has two effects. First, near-surface density stratification reduces the depth of vertical mixing. Second, mixing is confined to the nearly isothermal layer, resulting in little or no SST cooling.

Full access