Browse

You are looking at 11 - 20 of 24 items for :

  • Monthly Weather Review x
  • Waves to Weather (W2W) x
  • Refine by Access: Content accessible to me x
Clear All
Jeremy D. Berman
and
Ryan D. Torn

Abstract

Perturbations to the potential vorticity (PV) waveguide, which can result from latent heat release within the warm conveyor belt (WCB) of midlatitude cyclones, can lead to the downstream radiation of Rossby waves, and in turn high-impact weather events. Previous studies have hypothesized that forecast uncertainty associated with diabatic heating in WCBs can result in large downstream forecast variability; however, these studies have not established a direct connection between the two. This study evaluates the potential impact of latent heating variability in the WCB on subsequent downstream forecasts by applying the ensemble-based sensitivity method to European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasts of a cyclogenesis event over the North Atlantic. For this case, ensemble members with a more amplified ridge are associated with greater negative PV advection by the irrotational wind, which is associated with stronger lower-tropospheric southerly moisture transport east of the upstream cyclone in the WCB. This transport is sensitive to the pressure trough to the south of the cyclone along the cold front, which in turn is modulated by earlier differences in the motion of the air masses on either side of the front. The position of the cold air behind the front is modulated by upstream tropopause-based PV anomalies, such that a deeper pressure trough is associated with a more progressive flow pattern, originating from Rossby wave breaking over the North Pacific. Overall, these results suggest that more accurate forecasts of upstream PV anomalies and WCBs may reduce forecast uncertainty in the downstream waveguide.

Free access
Mirjam Hirt
,
Stephan Rasp
,
Ulrich Blahak
, and
George C. Craig

Abstract

Kilometer-scale models allow for an explicit simulation of deep convective overturning but many subgrid processes that are crucial for convective initiation are still poorly represented. This leads to biases such as insufficient convection triggering and late peak of summertime convection. A physically based stochastic perturbation scheme (PSP) for subgrid processes has been proposed (Kober and Craig) that targets the coupling between subgrid turbulence and resolved convection. The first part of this study presents four modifications to this PSP scheme for subgrid turbulence: an autoregressive, continuously evolving random field; a limitation of the perturbations to the boundary layer that removes artificial convection at night; a mask that turns off perturbations in precipitating columns to retain coherent structures; and nondivergent wind perturbations that drastically increase the effectiveness of the vertical velocity perturbations. In a revised version, PSP2, the combined modifications retain the physically based coupling to the boundary layer scheme of the original scheme while removing undesirable side effects. This has the potential to improve predictions of convective initiation in kilometer-scale models while minimizing other biases. The second part of the study focuses on perturbations to account for convective initiation by subgrid orography. Here the mechanical lifting effect is modeled by introducing vertical and horizontal wind perturbations of an orographically induced gravity wave. The resulting perturbations lead to enhanced convective initiation over mountainous terrain. However, the total benefit of this scheme is unclear and we do not adopt the scheme in our revised configuration.

Free access
Christian Euler
,
Michael Riemer
,
Tobias Kremer
, and
Elmar Schömer

Abstract

Extratropical transition (ET) of tropical cyclones involves distinct changes of the cyclone’s structure that are not yet well understood. This study presents for the first time a comprehensive Lagrangian description of structure change near the inner core. A large sample of trajectories is computed from a convection-permitting numerical simulation of the ET of Tropical Storm Karl (2016). Three main airstreams are considered: those associated with the inner-core convection, inner-core descent, and the developing warm conveyor belt. Analysis of these airstreams is performed both in thermodynamic and physical space. Prior to ET, Karl is embedded in weak vertical wind shear and its intensity is impeded by excessive detrainment from the inner-core convection. At the start of ET, vertical shear increases and Karl intensifies, which is attributable to reduced detrainment and thus to the formation of a well-defined outflow layer. During ET, the thermodynamic changes of the environment impact Karl’s inner-core convection predominantly by a decrease of θ e values in the inflow layer. Notably, notwithstanding Karl’s weak intensity, its inner core acts as a “containment vessel” that transports high-θ e air into the increasingly hostile environment. Inner-core descent has two origins: (i) mostly from upshear-left above 4-km height in the environment and (ii) boundary layer air that ascends in the inner core first and then descends, performing rollercoaster-like trajectories. At the end of the tropical phase of ET, the developing warm conveyor belt comprises air masses from several different source regions, and only partly from the cyclone’s developing warm sector, as expected for extratropical cyclones.

Open access
Marlene Baumgart
,
Paolo Ghinassi
,
Volkmar Wirth
,
Tobias Selz
,
George C. Craig
, and
Michael Riemer

Abstract

Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global, real-case ensemble simulations, in which the only difference between the ensemble members lies in the random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the relative importance of individual processes to enstrophy-error growth near the tropopause is quantified. After the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error growth up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the first 12 h, error growth is dominated by differences in the convection scheme. Differences in the upper-tropospheric divergent wind then project these diabatic errors into the tropopause region (day 0.5–2). The subsequent error growth (day 2–14.5) is governed by differences in the nonlinear near-tropopause dynamics. A fourth stage of the error growth is found up to 18 days when the envelope diagnostic indicates error growth from the synoptic up to the planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed in general. However, a novel interpretation of the governing processes is provided. The insight obtained into the dynamics of upscale error growth may help to design representations of uncertainty in operational forecast models and to identify atmospheric conditions that are intrinsically prone to large error amplification.

Open access

The Extratropical Transition of Tropical Cyclones. Part II: Interaction with the Midlatitude Flow, Downstream Impacts, and Implications for Predictability

Julia H. Keller
,
Christian M. Grams
,
Michael Riemer
,
Heather M. Archambault
,
Lance Bosart
,
James D. Doyle
,
Jenni L. Evans
,
Thomas J. Galarneau Jr.
,
Kyle Griffin
,
Patrick A. Harr
,
Naoko Kitabatake
,
Ron McTaggart-Cowan
,
Florian Pantillon
,
Julian F. Quinting
,
Carolyn A. Reynolds
,
Elizabeth A. Ritchie
,
Ryan D. Torn
, and
Fuqing Zhang

Abstract

The extratropical transition (ET) of tropical cyclones often has an important impact on the nature and predictability of the midlatitude flow. This review synthesizes the current understanding of the dynamical and physical processes that govern this impact and highlights the relationship of downstream development during ET to high-impact weather, with a focus on downstream regions. It updates a previous review from 2003 and identifies new and emerging challenges and future research needs. First, the mechanisms through which the transitioning cyclone impacts the midlatitude flow in its immediate vicinity are discussed. This “direct impact” manifests in the formation of a jet streak and the amplification of a ridge directly downstream of the cyclone. This initial flow modification triggers or amplifies a midlatitude Rossby wave packet, which disperses the impact of ET into downstream regions (downstream impact) and may contribute to the formation of high-impact weather. Details are provided concerning the impact of ET on forecast uncertainty in downstream regions and on the impact of observations on forecast skill. The sources and characteristics of the following key features and processes that may determine the manifestation of the impact of ET on the midlatitude flow are discussed: the upper-tropospheric divergent outflow, mainly associated with latent heat release in the troposphere below, and the phasing between the transitioning cyclone and the midlatitude wave pattern. Improving the representation of diabatic processes during ET in models and a climatological assessment of the ET’s impact on downstream high-impact weather are examples for future research directions.

Open access
Michael Maier-Gerber
,
Michael Riemer
,
Andreas H. Fink
,
Peter Knippertz
,
Enrico Di Muzio
, and
Ron McTaggart-Cowan

Abstract

Tropical cyclones that evolve from a nontropical origin and undergo tropical transition (TT) play a prominent role in cyclogenesis in the North Atlantic Ocean. They pose a special challenge for predictions, as they often emerge at the end of a multiscale cascade of atmospheric processes. Here we use operational European Centre for Medium-Range Weather Forecasts ensemble predictions to investigate the TT of North Atlantic Hurricane Chris (2012), whose formation was preceded by the merger of two potential vorticity (PV) maxima, eventually resulting in the cyclone-inducing PV streamer. The principal goal is to elucidate the dynamic and thermodynamic processes governing the predictability of Chris’s cyclogenesis and subsequent TT. Dynamic time warping is applied to identify ensemble tracks that are similar to the analysis track. This technique permits small temporal and spatial shifts in the development. The formation of the pre-Chris cyclone is predicted by those members that also predict the merging of the two PV maxima. The PV streamer’s shape and its position relative to the pre-Chris cyclone determine whether the cyclone follows the TT pathway. The transitioning cyclones are located inside a favorable region of high equivalent potential temperatures that result from a warm seclusion underneath the cyclonic roll-up of the PV streamer. A systematic investigation of consecutive ensemble forecasts indicates that sudden changes in ensemble statistics of cyclone metrics are linked to specific events. The present case exemplifies how a novel combination of Eulerian and cyclone-relative ensemble forecast analysis tools allow inference of physical causes of abrupt changes in predictability.

Open access
Jacopo Riboldi
,
Christian M. Grams
,
Michael Riemer
, and
Heather M. Archambault

Abstract

The extratropical transition (ET) of tropical cyclones (TCs) can significantly influence the evolution of the midlatitude flow. However, the interaction between recurving TCs and upstream upper-level troughs features a large and partly unexplained case-to-case variability. In this study, a synoptic, feature-based climatology of TC–trough interactions is constructed to discriminate recurving TCs that interact with decelerating and accelerating troughs. Upper-level troughs reducing their eastward propagation speed during the interaction with recurving TCs exhibit phase locking with lower-level temperature anomalies and are linked to pronounced downstream Rossby wave amplification. Conversely, accelerating troughs do not exhibit phase locking and are associated with a nonsignificant downstream impact. Irrotational outflow near the tropopause associated with latent heat release in regions of heavy precipitation near the transitioning storm can promote phase locking (via enhancement of trough deceleration) and further enhance the downstream impact (via advection of air with low potential vorticity in the direction of the waveguide). These different impacts affect the probability of atmospheric blocking at the end of the Pacific storm track, which is generally higher if a TC–trough interaction occurs in the western North Pacific. Blocking in the eastern North Pacific is up to 3 times more likely than climatology if an interaction between a TC and a decelerating trough occurs upstream, whereas no statistical deviation with respect to climatology is observed for accelerating troughs. The outlined results support the hypothesis that differences in phase locking can explain the observed variability in the downstream impact of ET.

Full access
Hilke S. Lentink
,
Christian M. Grams
,
Michael Riemer
, and
Sarah C. Jones

Abstract

Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET. Here, observations from T-PARC are employed to verify high-resolution simulations of Sinlaku. In addition, a sensitivity simulation is performed with the orography of Japan removed. The presence of orography causes blocking of low-level, cool midlatitude air north of Japan. Without this inflow of cool air, ET is delayed. Only once Sinlaku moves away from the orographic barrier does the cool, dry environmental air penetrate equatorward, and ET continues. On a local scale, evaporatively cooled air from below Sinlaku’s asymmetric precipitation field could be advected toward the cyclone center when orography was favorable for it. Changes in the vortex structure, as known from mature TCs interacting with orography, were only minor due to the high translation speed during ET. This study corroborates that orography can impact ET by modulating both the synoptic-scale environmental conditions and the mesoscale cyclone structure during ET.

Full access
Paolo Ghinassi
,
Georgios Fragkoulidis
, and
Volkmar Wirth

Abstract

Upper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs and their zonal propagation. This difference in performance is demonstrated more explicitly in the framework of an idealized barotropic model simulation, where LWA is able to follow an RWP into its fully nonlinear stage, including cutoff formation and wave breaking, while the envelope diagnostic yields reduced amplitudes in such situations.

Open access
Stephan Rasp
and
Sebastian Lerch

Abstract

Ensemble weather predictions require statistical postprocessing of systematic errors to obtain reliable and accurate probabilistic forecasts. Traditionally, this is accomplished with distributional regression models in which the parameters of a predictive distribution are estimated from a training period. We propose a flexible alternative based on neural networks that can incorporate nonlinear relationships between arbitrary predictor variables and forecast distribution parameters that are automatically learned in a data-driven way rather than requiring prespecified link functions. In a case study of 2-m temperature forecasts at surface stations in Germany, the neural network approach significantly outperforms benchmark postprocessing methods while being computationally more affordable. Key components to this improvement are the use of auxiliary predictor variables and station-specific information with the help of embeddings. Furthermore, the trained neural network can be used to gain insight into the importance of meteorological variables, thereby challenging the notion of neural networks as uninterpretable black boxes. Our approach can easily be extended to other statistical postprocessing and forecasting problems. We anticipate that recent advances in deep learning combined with the ever-increasing amounts of model and observation data will transform the postprocessing of numerical weather forecasts in the coming decade.

Open access