Browse

You are looking at 201 - 210 of 523 items for :

  • Weather, Climate, and Society x
  • Refine by Access: Content accessible to me x
Clear All
Adrienne Marshall, Van Butsic, and John Harte

Abstract

Phenology studies are a critical tool for identifying the ways that changing climate affects species and ecosystems. Here, a phenological framework was used to assess the sensitivity of human behavior to temperature and hydroclimate variables that are likely to change as temperatures warm under twenty-first-century climate change. The timing of visitation to wilderness areas of the Sierra Nevada was used as a case study. Visitation timing was assessed using a backcountry permit database and data collected from weblogs or blogs. Mean, earliest, and latest visitation dates were regressed against temperature, streamflow, and snowpack variables: seasonally averaged air temperatures, snow water equivalent (SWE) in spring months, center of timing (CT), and total annual flow. Mean visitation was sensitive to CT, total annual flow, April and May SWE, and spring and summer temperatures, with visitors advancing 0.20–0.28 days for each day advance in CT and 3.7 to 5.7 days for each degree Celsius increase in summer temperatures. Visitors appear to be partially sensitive to both hydroclimate and temperature, suggesting that visitation may occur earlier as spring snow decreases, but also that because of this partial sensitivity, visitors may interact with ecosystems in a different phenological stage as the climate warms. Managers of these areas should plan for changing timing of visitation and should also consider ways that visitors interacting with different hydroclimatic and ecosystem conditions may influence management strategies.

Full access
James B. Elsner, Emily Ryan, and Georgianna Strode

Abstract

Property losses from tornadoes in Florida are estimated by combining a 1-km spatial grid of structural values from the Department of Revenue’s 2014 cadastral database with historical tornado events since 1950. There are 91 180 grid cells in the state with at least some structural value. Total and residential structural values total $942 billion and $619 billion, respectively. Over the period 1950 through 2015 there were 3233 individual tornado reports in the state with a peak frequency during June. The property value exposed to tornadoes is estimated using a geometric model for the path. Annual statewide total and residential structural property exposure to tornadoes is estimated at $171 million and $103 million, respectively. Property exposure to tornadoes peaks in February. A regression model quantifies the relationship between actual losses since 2007 and exposures. A doubling of the residential exposure increases actual recorded losses by 26% since 2007, and a doubling of nonresidential exposure increases losses by 21%, controlling for changes over time. Randomization of the historical tornado paths provides alternative exposure scenarios that are used to determine the probability of extreme loss years. Results from the Monte Carlo algorithm indicate a 1% chance that the annual loss will exceed $430 million and a 0.1% chance that it will exceed $1 billion. These findings, and the procedure to obtain them, should help property insurance and reinsurance companies gauge their risk of losses and prioritize their management actions.

Full access
Catherine Vaughan, Suraje Dessai, and Chris Hewitt

Abstract

Billed as the creation and provision of timely, tailored information for decision-making at all levels of society, climate services have garnered a great deal of attention in recent years. Despite this growing attention, strategies to design, diagnose, and evaluate climate services remain relatively ad hoc—and while a general sense of what constitutes “good practice” in climate service provision is developing in some areas, and with respect to certain aspects of service provision, a great deal about the effective implementation of such service remains unknown. This article reviews a sample of more than 100 climate service activities as a means to generate a snapshot of the state of the field in 2012. It is found that a “typical climate service” at this time was provided by a national meteorological service operating on a national scale to provide seasonal climate information to agricultural decision-makers online. The analysis shows that the field of climate services is still emerging—marked by contested definitions, an emphasis on capacity development, uneven progress toward coproduction, uncertain funding streams, and a lack of evaluation activities—and stands as a signpost against which the development of the field can be measured. The article also reflects on the relative contribution of this sort of sampling activity in informing “good practice” and offers suggestions for how both sampling and case study efforts can be better designed to increase the potential for learning. This article concludes with some observations on the relative contribution that broad-based analyses can play in informing this emerging field.

Open access
Frauke Hoss and Paul Fischbeck

Abstract

Many factors affect the extent to which forecasts inform emergency responses. In a survey based on the Theory of Planned Behavior (TPB), 207 U.S. emergency managers (EMs) were asked about 1) their past and intended future use of short-term weather forecasts and recorded weather data, 2) the perceived limitations and 3a) their attitude toward the usefulness of such weather information, 3b) their attitude toward their job and toward uncertainty, 4) perceived social norms, and 5) self-assessed numeracy. Work experience was found to be the best predictor of whether an emergency manager relied on recorded weather data and short-term weather forecasts in the past or intends to do so in the future. Among TPB variables, mainly social expectations and data attitude drive the reliance on recorded weather data and short-term forecasts. The EMs’ perception of the weather information’s limitations is related to their perceptions of what their social surroundings think. In sum, this article sheds light on when and why EMs use weather data and forecasts and how training can be improved.

Full access
Bogdan Antonescu, Jonathan G. Fairman Jr., and David M. Schultz

Abstract

On 24–25 June 1967 one of the most intense European tornado outbreaks produced extensive damage (approximately 960 houses damaged or destroyed) and resulted in 232 injuries and 15 fatalities in France, Belgium, and the Netherlands. The 24–25 June 1967 tornado outbreak shows that Europe is highly vulnerable to tornadoes. To better understand the impact of European tornadoes and how this impact changed over time, the question is raised, “What would happen if an outbreak similar to the 1967 one occurred 50 years later in 2017 over France, Belgium, and the Netherlands?” Transposing the seven tornado tracks from the June 1967 outbreak over the modern landscape would potentially result in 24 990 buildings being impacted, 255–2580 injuries, and 17–172 fatalities. To determine possible worst-case scenarios, the tornado tracks are moved in a systematic way around their observed positions and positioned over modern maps of buildings and population. The worst-case scenario estimates are 146 222 buildings impacted, 2550–25 440 injuries, and 170–1696 fatalities. These results indicate that the current disaster management policies and mitigation strategies for Europe need to include tornadoes, especially because exposure and tornado risk is anticipated to increase in the near future.

Full access
Robert M. Rauber
Open access
Veronica Makuvaro, Cyril T. F. Murewi, John Dimes, and Ignatius Chagonda

Abstract

The livelihoods of the majority of people in semiarid areas of developing nations are based on rain-fed agriculture. In the wake of climate variability and change, communities in these regions are the most vulnerable because of their limited capacities to adapt to environmental changes. Smallholder farmers in the study area, Lower Gweru in central Zimbabwe, ascertain that they have observed changes in some rainfall and temperature patterns. These changes include higher temperatures, an increased number of seasons without enough rainfall, and an increased frequency of droughts and lengths of dry spells. The aim of this study was to find out whether farmers’ perceptions are supported by mean and extreme event trends in observed historical climate data. Gweru Thornhill meteorological data were analyzed for significant trends. The analysis showed that temperatures are increasing significantly, consistent with farmers’ observations that temperatures are getting hotter. This study revealed that farmer perceptions on rainfall were not consistent with historical climatic trends. Thus, farmers in the Lower Gweru area may not be a very reliable source of long-term rainfall trends.

Full access
Johnathan P. Kirk and Gordon A. Cromley

Abstract

Modern datasets cataloging historical events, known as digital event gazetteers, feature spatiotemporal data regarding events that enable analysis through parameters including location and other descriptive information of those events. Weather and climate data represent two dimensions of spatiotemporal information, which can enhance understanding of historical events. A recently published digital event gazetteer of airborne parachute operations [opérations aéroportées (OAPs)] during and prior to the French Indochina War, spanning from 1945 to 1954, represents an opportunity to associate discrete historical events with weather information. This study outlines a methodology for assimilating weather data into the construct of a digital event gazetteer and then demonstrates example analyses of how the weather and climate conditions in Indochina may relate to OAPs during the war.

A synoptic classification, utilizing the self-organizing maps procedure, is performed using daily mean sea level pressure data from 1945 to 2010, from a twentieth-century reanalysis dataset, to characterize weather patterns over the Indochina Peninsula. Since observations are sparse during the years of the conflict, the resulting weather patterns are associated with modern precipitation observations in the area, as a representation of wet and dry patterns during the war. The appropriate daily weather pattern is then assigned to each OAP in order to investigate its relationship with the weather and climate patterns of Indochina, including the influence of monsoon seasons, and how the resulting precipitation patterns affected combat operations across the theater. Additionally, specific OAPs of various missions are analyzed to investigate how weather patterns may have affected operation planning during the French Indochina War.

Full access
G. Roder, G. Sofia, Z. Wu, and P. Tarolli
Full access
Jeannette Sutton, Sarah C. Vos, Michele M. Wood, and Monique Turner

Abstract

Although tsunamis have the potential to be extremely destructive, relatively little research on tsunami messaging has taken place. Discovering whether tsunami warning messages can be written in a way that leads to increased protective response is crucial, particularly given the increased use of mobile message services and the role they play in notifying the public of imminent threats such as tsunami and other hazards. The purpose of this study was to examine the possibility of designing warning messages for tsunamis that improve upon message style and content used by public alerting agencies to date and to gain insight that can be applied to other hazards. This study tested the impact of tsunami messages that varied in length and content on six message outcomes—understanding, believing, personalizing, deciding, milling, and fear. Relative to the short message, revised messages resulted in significantly more understanding and deciding, known precursors to taking protective action under threat. The revised message also resulted in significantly more fear, which is believed to influence behavioral intentions. Findings suggest that shorter messages may not deliver enough content to inform message receivers about the threat they face and the protective actions they should perform. Longer messages delivered with more specific information about the location of impact, threat-associated risks, and recommended protective actions were associated with better message outcomes, including quicker intended response. Recommendations for future tsunami warnings are provided.

Full access